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ABSTRACT

This Program Method and Usage document summarizes the analytic method and describes
the usage of a CDC 6600 FORTRAN IV digital computer program which uses minimum
energy principles to solve for compressive buckling loads and displacement pattern of
stiffened plates built up of orthotropic laminated flat plate elements as well as beam
elements (e.g. integral panels, corrugated plates). The program takes advantage of
the repetitive nature of the problem, and only one of the repetitive parts and the end
parts of the stiffened plate need to be described in the input together with the number
of repetitions. The program can handle a maximum of 25 plate elements with up to 25
laminas and 10 beam elements with up to 35 laminas. The plate cannot be of more
than 10 different types in the sense that their stiffnesses are the same. When the
geometry and material constants are given the program will calculate the buckling load
and optionally also the displacement pattern for the chosen boundary conditions. The
unloaded sides can be free, simply supported, or clamped or be supported by a beam
element. The loaded edges are simply supported. A correlation between results from
this program and the literature is shown. A Program Description Document is also avail-
able for this program. The program is developed for NASA, Langley Research Center,
under Contract No. NAS1-8858.

Additional documents under this contract are:

(1) Program Method and Usage Document; (2) Program Description Document:
BUCLAP - "A Computer Program for Uniaxial Compressive Buckling Loads of
Orthotropic Laminated Plates."

(3) Program Method and Usage Document; (4) Program Description Document:
BUCLAS - "A Computer Program for Uniaxial Compressive Buckling Loads of
Orthotropic Laminated Structural Sections."

(5) Analysis Report - "Buckling Analysis for Axially Compressed Flat Plates,
Structural Sections and Stiffened Plates Reinforced with Laminated Composites.
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1.0 SUMMARY

The BUCLASP program has the capability to solve for the critical compressive buckling
load on stiffened plates, e.g. corrugated plates, integral panels, built up of ortho-
tropic laminated, flat plate elements as well as beam elements. Optionally the pro-
gram willl also establish the buckling displacement pattern for the critical load and
mode. The method used here is the classical approach of minimum enerly considera-
tion. Linearized theory is used. The general othotropic, laminated plate theory that
was derived earlier for the plate program BUCLAP is applied to each plate element of
the cross-section of the stiffened plate in a similar way as for the program for buckling
of structural sections BUCLAS. Full compatibility is satisfied at the junctions of the
plate elements. Thus the boundary conditions for each plate element will contain
forces and displacements of the adjacent plate elements.

1.1 Problem Description

This program was originated in connection with NASA Contract No. NASI-8858. The
purpose of the computer program is to implement the analytical work under the same
contract.

The objective of this effort is to develop a program which computes the axial compres-
sive buckling loads for various composite reinforced stiffened panels. The cross-section
is built up from the required number of flat laminated plate elements and also beam
elements of various shapes. The boundary conditions at the loaded edges of each element
are simply supported, while the boundary conditions at the unloaded sides of the cross-
section can be free, simply supported or clamped. These unloaded sides can also be
supported by beam elements; e.g. lips or beads.

This program is the third in a series of programs for buckling of composites, where the
first program concerns the bucklingloads at plates with various boundary conditions, and
the second involves the solution of buckling loads for structural sections.

1.2 Resul ts

The numerical results obtained from the programmed method is correlated with the avail-
able literature for isotropic stiffened panels, for the various boundary conditions. The
effect of assuming certain plate elements as beam elements is studied.

Page 1.1



o For orthotropic laminated stiffened plates the results available in the literature are
limited, but the data available is checked. Sample cases of isotropic and orthotropic
plates are simulated to run on this program and the results are compared to the re-
suits obtained from the plate program BUCLAP and the sections program BUCLAS (both
developed under this contract) for the same data.

As can be seen from Section 5.0 the correlation is good.

The functional aspects are tested as shown in Section 5.2.

1.3 Conclusions

The quality of the verification of results (Section 5.0) demonstrates that the theoretical
method is adequate.

1.4 Recommendations

The numerical difficulties, inherent in the type of problem solved here, have established
the search strategy for determining the critical load, which involves finding the zero
crossing of the buckling determinant. The progress of this search depends upon the
magnitude of the starting load and a load interval. One property of high order poly-
nomials (i.e. large determinants) is that its roots will be very close together, thus in
certain cases two, or more, zero crossings of the determinant may occur for quite close
buckling loads. Also in certain cases the critical load is very close to a load which
gives double roots when the equilibrium equations are solved. Under conditions like
these, care must be exercised in choosing the starting load and the iteration step size.
If convergence difficulties are encountered, adjustment (decrease) of the load increment
input data normally increases the likelihood of successful solution achievement.

The program has been coded with care so as to minimize the probability for any of these
problems to occur.
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2.0 THEORY

In this section, only those parts and details necessary for the understanding of the

computer program, are given. Full details of the analysis are given in: Viswanathan,

A. V.; Soong, T. C.; and Miller, Jr., R. E.: "Buckling Analysis for Axially Com-

pressed Flat Plates, Structural Sections and Stiffened Plates Reinforced with Laminated

Composites," prepared for NASA Langley Research Center, by The Boeing Company,

November, 1970.
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2.1 Notation

a Axial length of the structure.

A1 , A 12 ,' A2 2 , A6 6  Extensional stiffnesses

Ab Area of beam element

b Width of beam element

B1 1' B12 , B2 2 ' B6 6  Bending-stretching coupling stiffnesses

D1 llD 12 , D2 2 , D6 6  Bending stiffnesses

E1 1 E12 , G 1 2 ' G 23  Modulli of elasticity

hk Coordinate for the surface of kth lamina (Figure 2.3)

hk Distance from neutral plane to the surface of kth lamina (Figure 2.3)

I zzI Moments of inertia of beam element

J St. Venant torsion constant

K8 K6 '.. ,K Coefficients of characteristic equation (Equation (20))

Number of laminas

Ll1, L2i, L3i Displacement ratios (Equations (21), (22), and (24))

m Axial half-wave number

(m22)i, (m22)wl Moment factors (Equations (33) and (41))

Mll M12' M22 Moments due to buckling displacements

(n12 )i,(n 12 )ui In-plane shear factors (Equations (34) and (42))

(n2 2 )i,(n 2 2)ui In-plane force factors (Equations (35) and (43))

N ,11' 22 N 12 In-plane forces due to buckling displacements

N11 External unlaxial compressive load on flat plate elements (Ibs/in.)

PI' Pul' wi Roots of characteristic equation
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" b External axial compressive load on beam elements (lbs)

P Axial load in beam elements induced by buckling displacements.

qi' wi Transverse shear factors (Equations (32) and (40))

qy' ,z Transverse shear intensity in beam elements

Q Transverse shear in flat plate elements

k k
Q 1Q 2 2 ,etc. Elements of lamina stiffness matrix

RI, fR2 } , IRj Displacement coefficient matrices

R11 ,R 12 , ... ,R3 3  Elements of flat plate element equilibrium matrix

S11  First element of the lamina compliance matrix, [Qi.k]-

tk Thickness of kth lamina

[Td], [Tf] Transformation matrices

T Torque on beam elementx

u,v,w Neutral plane displacements of the plate and the center of the
beam element

x,y,z Local coordinates of elements

[X ], [X ],+I Matrices for displacements and forces of flat plate and beam
[X3 ],lX3 -],etc. elements for inter-element matching.

Yo z 0 Off-sets

z Distance to neutral plane of flat plate elements (Figure 2.3)n

[I I Matrices

Column matrix

etc. c- , etc. Pagex 2.3x
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,8, Wave mode parameters (Equations (16) and (80))

1 Warping constant of beam element

T, Y In-plane unit strains

0 Rotation about longitudinal axis

1 to 4 Beam element force factor (Equation (83))

'y',y In-plane stress components

Ip1 Beam element property

Angle between global Y and local y axes

Sl I i'i Displacement factors for flat plate elements. Equations (28) to

Wwi' wi' ,lui' Pui (31) and Equations (36) to (39).

Superscripts:

+ Side y = +b/2 of flat plate element

Side y = -b/2 of flat plate element

Subscripts:

BG Beam element quantities with respect to global axes

BS Beam element quantities with respect to local off-set axes.

(1),(2),etc. Element numbers

i Numbering of characteristic equation roots of flat plate elements.

k Lamina numbering

PG Flat plate element quantities with respect to global axes.

PS Flat plate element quantities with respect to local off-set axes..
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2.2 Method

The type of structure, considered is of uniform cross-section and is assembled from

orthotropic laminated flat plate and laminated beam elements. In a macro-mechanic

sense, the material in each lamina is homogeneous and orthotropic with respect to the

axes of the structure. This restriction on orthotropicity can be relaxed, without causing

serious error under certain conditions, as discussed in Section 2.3.2.

The loading is uniaxial compression. Typical examples of such structures are stiffened

plates, truss core and corrugated core sandwich plates, etc. The method of numerical

solution used precludes any "closed" structure, where the first and the last elements

are interconnected as in a polygonal box. However, a closed part can be part of the

whole, as in hat stiffened plates, truss core sandwich plates, etc. The numerical

method also takes advantage of any repetitive nature of part of the structure (e.g.

repetitive stiffeners in stiffened plates).

The intersecting angle between the elements can be arbitrary. The loaded edges of

each element are simoly supported. Any unloaded edge of the structure, when not

supported by a beam element can be free, simply supoorted or clamped.

In the present buckling analysis linear theory is used. The prebuckling deformations
and possible initial imperfections are ignored. The buckling load is defined as the
smallest load at which a part of the structure (local instability) or the whole of the
structure (general instability) starts to develop out-of-plane displacements (w), resulting
in a state of unstable equilibrium consistent with the given boundary conditions.

A set of buckling displacement functions, automatically satisfying the simply supported
boundary conditions along the loaded edges and having the same axial mode (wave-
length) in all elements, are assumed for each element making up the structure.
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For flat plate elements, the buckling displacements assumed are u, v, and w. Sub-

stitution of the displacement functions into the equilibrium equations for a laminated

flat plate leads to a characteristic equation for each element, which in general is a

polynomial of 8th degree. Corresponding to each level of uniform axial strain in all

elements, there is a set of roots from this characteristic equation, for each flat plate

element. Using these roots, buckling displacements and the corresponding forces a-

long the unloaded edges of each flat plate element are evaluated.

For beam elements, the buckling displacements assumed in the translations u, v, w,

and the rotation B about the longitudinal axis. Applying the theories of bending

and torsion of beams (including axial compression effects) the forces along the beam

due to buckling displacements are determined.

In a structure made up of these elements, for continuity, the corresponding disp!ace-

ments of adjacent elements should be equal. Similarly, since there are no external

loading at a junction of elements, for equilibrium, the corresponding forces from adja-

cent elements should be equal and opposite. These enforced continuity and equilibrium

requirements form the boundary conditions along the junctions of elements. Along any

unloaded edge, when not supported by a beam element, the boundary conditions can

correspond to a free, simply supported or clamped edge.

These enforced boundary conditions result in a set of homogeneous simultaneous equa-

tions. The buckling load is obtained from these equations by determining the minimum

value of the applied load for which the determinant of the coefficient matrix becomes

zero. Buckling loads corresponding to various modes in the axial direction are evaluated

and the minimum determined. The eigenvector giving the buckled shape corresponding to

the minimum buckling load is obtained using inverse iteration technique.

It is important to note that the buckling loads and the corresponding eigen-modes are de-

termined from a general instability analysis, in that no restrictions are placed on the

buckling deformation of the cross-section (except that the angles between elements remain
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unchanged). The eigen-modes are indicative of overall or local nature of instability.

In contrast the classical buckling analysis assumes restricted deformation of the cross-

section as in flexural (Euler) mode, torsional mode, local mode, etc. Such simplifying

restrictions can sometimes result in missing the lowest buckling load.

Attention is also drawn to the fact that the loaded edge of each element making up

the structure is assumed to be simoly supported. Thus each flat plate element has a

line condition of simple support and each beam element a point condition of simple

support at the loaded edges. Thus for structures of complex cross-sectional shape, the

overall end conditions in the present analysis will be different compared to the conven-

tional Euler instability theory, where the structure as a whole is idealized to a line

member and simply supported, resulting in a point condition of simple support at the

loaded ends. The effect of this will be small when the axial half-wave length of

buckling is small compared to the length of the structure.
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2.3 Idealization of the Structure under Uniaxial Compression into Elements

This section describes how the structure is idealized as an assemblage of flat plate

elements and beam elements. As stated in Section 2.2, the structure is of uniform

cross-section. Figure 2.1 shows the cross-section of a typical arbitrary structure.

Y, Z axes are the global axes, the global X-axis being parallel to the longitudinal

axis of the structure. The dashed line represents the outer contour of the structure.

The solid line in the interior of the structure is drawn through the mid-plane of each

segment.

X

Y

(5) (7)
(4) --------------- - - - j

Z (2)•"

; -- 1 , Local \ 1
/ " Reinforcement (6)
/ (3) \

l I '
(i) / /

Beade , " (8)

FIGURE 2.1. Idealization of Structure into Elements

It is easy to see that the flat sides of the structure are idealized as flat plate elements

and the bead and the local reinforcement as beam elements. The numbers in parenthesis

are the element numbers.
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The intersection of the mid-plane linesifor adjacent segments is used to identify the

boundaries of individual flat plate elements. These intersections are indicated by the

dots in Figure 2.1, where the dots are also used to identify the geometric center of

the beam elements.

When three or more flat plate elements of differing thicknesses are involved at a junc-

tion (e.g. junction of elements (5), (6), and (7) in Figure 2.1) It is not possible to

have a common intersection of all the mid-planes. In such cases the intersection of

two or them are chosen while the other flat plate elements are assumed to have ficti-

tious rigid off-sets to the chosen intersection. These off-sets are further discussed In

Section 2.4.4.

The geometric centers (beam elements) and the mid-planes (flat plate elements) are

chosen since the element junctions can be easily fixed from the geometry alone. No

other special significance is attached to this choice.

The structure of Figure 2.1 can be considered as an assemblage of:

(a) beam elements (3) and (8),

(b) flat plate elements (1), (2), (4), (5), (6), and (7).

Any other structure of uniform cross-section can be idealized in a similar manner.

Figure 2.2 shows a hat stiffened plate, with the element numbers shown in parenthesis.

Attention is drawn to element number (2) which is a typical flat plate element, formed

in this case by part of the skin and the attached flange. This idealization which is

used in the present program, is correct when the stiffeners are bonded to the skin.

When stiffeners are rivetted to the skin this idealization over-estimates the bending stiff-

ness of such elements.
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(1) (2) (4) (7) (8) (9) (11) (14) (23) (25) (28) (29)

(3) =. (6) (10) (13) Ti: 1 (27)

(5) (12) (26)

FIGURE 2.2. Idealization of a Hot Stiffened Plate into Elements

It is possible to idealize each complete stiffener in a stiffened plate as a beam* element,
using the appropriate beam properties, discussed in Section 2.5.1 and 2.5.2. Since the
beam elements have a point simple support condition at the loaded ends and the flat
plate elements have a line condition of simple support along the loaded edges, the
idealization of each complete stiffener as a beam element will result in different overall
end conditions for the stiffened plate. This may result in differing buckling loads.
Further, when the stiffeners are of thin plate construction (e.g. hats, zees, etc.), the
instability analysis based on the beam idealization of each complete stiffener, naturally
will not cover local instability of any part of the stiffener.

In the buckling analysis, the element displacements and forces (due to buckling displace-
ments) satisfy conditions of inter-element continuity and equilibrium, together with any
other specified boundary conditions along the unloaded edges not supported by a beam
element.
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2.4 Flat Plate Element

Any flat part or side of the structure under uniaxial compression, which behaves as a
plate is defined here as a flat plate element. The flat plate element is of constant
thickness and is, in general, laminated. As stated earlier each lamina is orthotropic
with reference to the axes of the structure. This restriction on orthotropicity can be
relaxed without causing serious error under certain conditions, as discussed in Section
2.4.2. The basic equations of the flat plate element are given in the following sub-
sections.

2.4.1 Material and Geometry Constants for a Flat Plate Element

For a lamina of orthotropic material, the matrix Q relates stress and strain in the fol-
lowing manner:

l= [ac)- (1)

or

r k Qk Q k 0x 11 12 x

k k k (2)
y 12 22 0

k kk 0 Qk Y
0xy 66 xy .

where k denotes lamina number.
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The Q-matrix for a lamina depends on the material properties of the lamina,

Ell

11 ( - 21' 12)

E22

S 2 1 E1 1  V12E22
12 (1 - v J21 ( - v21vl2 )

Q66 = G12

Note that x, y, and z axes are assumed to be identical with directions 1, 2,
and 3, respectively.

The quantity z locates a neutral plane relative to the reference
plane chosen at either one of the outer surfaces of the flat plate element. This
neutral plane is fixed by locating the :resultant of. the u|1fxial force in
the layers for a uniform strain across the thickness. Whenever the matrix [IB = 0
(coupling stiffness, see page 2.14), with respect to this neutral plane, there is no
coupling between bending and stretching (for instance, an isotropic or a symmetri-
cally laminated flat plate element).

The expression for z is:

= 1 t k (hk+1 + hk)

tkk/Si (4)
k=1

where S11 is the first element of (Q] for layer number k.
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reference
plane z
neut 1,x h

plane hk
tht

kt h lamina tk

3,z

Figure 2.3. Flat Plate Element:* Laminate Geometry

2.4.2 Overall Stiffnesses of a Flat Plate Element

The Q-matrix mentioned above (Equations 2 and 3) represents the stiffness matrix

for each lamina. In the actual calculations, the stiffnesses of the flat plate

element as a whole are needed.

In the following, the extensional stiffness, coupling stiffness and bending stiffness

for the flat plate element are denoted by the A-matrix, B-matrix, and D-matrix,

respectively.

Using linear theory, the strain at any point across the thickness in terms of the

displacements, is written as:

x ,x ,XX

y. ,y -Z ' y y  (5)

, xy Uy ,x 2w ,xy

where z = distance from point to neutral plane

u, v, and w are the displacements of the neutral plane.
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Thus the stresses (o'due to any displacements u, v, and w at any point, can be
calculated using Equations (5) and (2). The stresses and their moments can be
integrated across the thickness to establish the force and moment resultants on the
differential element.

N 1  / a"dz M ' z * dzII Idz

N22  o-dz M2 2  y z * dz (6)

N 1 2 - ! ydz M2 y f z dz

The integration yields:

N A A12 O u B O w11 11 12 ,x 11 12 ,xx

N 2 2  = A 12  A2 2  0 v B 22 0 w (7)
,y - 12 22 ,yy

N 0 0 A u 4 v 0 0 B 2w
12 66 ,y ,x 66 ,xy

II 11 12 ,x 11 12 ,xx

M = B B 0 v -D D 0 w (8)22 12 22 ,y 12 D22 ,yy (8)

M 0 0 B u +v 0 0 D 2w2 66 ,y ,x 66 ,xy

where the A, B, and D coefficient matrices,define the extensional, coupling and

bending stiffnesses, respectively, of the laminated orthotropic flat plate element.
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The elements of the A, B, and D matrices are given by:

A . = (Qii)k (tk  9)

Bi 2 h k (hk I + hk)  (10)

Di I (Qij)k (hk + + hk+ 1  h + ) tk  (11)

In the above expressions, k is the lamina number, j is the total number of laminas.

h is the distance from the neutral plane to the surface of the respective lamina

(hk = hk - zn).

Equations (2), (7), and (8) are based on the assumption that the material orthotropic

axes coincide with the lamina axes. Boron fiber reinforced composite. laminas with

fibers at 00 or 900 are typical examples. When the fibers are at any other angle,

each lamina, though orthotropic with respect to the fiber direction, is anisotropic with

respect to the lamina axes. Q.. are then replaced by their transformed values Q.. (see
II II

for example: Ashton, J. E.; Halpin, J. C.; Petit, P. E.: "Primer on Composite

Materials, " Technomic Publication, 1969, Equation (2-35)), resulting in the matrices

[Q], [A], [B], and [D] in Equations (1), (7), and (8) being fully populated. However,

for a mid-plane symmetric laminate composed of a large number of layers the "16" and

"26" terms in these matrices are either zero or small and can be ignored.
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2.4.3 Equations for a Flat Plate Element

The forces acting on a differential element of the flat plate element are shown
in Figure 2.4.

N2 2  M12

N12 I,x M22

M12

// /2,y 2, y

Figure 2.4. Forces on a Differential Element of the "Flat Plate Element"

Using variational principles, the three differential equations of equilibrium are
obtained as:

aN aN11 12
x + y =0 (12)

N22 N12
+ 7; = 0 (13)
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2 M2 M
11  2~2  12x + + 2 N w (14)

2 2 bx-yI,xx

These equations can be expressed in terms of displacements using the relationship:

INJ = [A]Ieo + [Blx)I

M) = [BleOl + [D]I)K (15)

where Ieo and I() refer to strains and curvatures in the neutral reference plane.

The following, general buckling displacement functions are assumed for the flat
plate element:

8
w = E W. sin 6 "'e#

i=

8
v = L V. sin d e0 (16)

i=1

8
u = L U. cos a • e8-

i=1

where

mfrx
a

rpiY

Figure 2'.5 shows the -iemetry: d th.heat plate etement .The x-y paie coincides
wtth neurat plahe ,of .the plate,- (Eqption"(4))

These functions automatically satisfy the simply supported boundary conditions along
the edges x = 0 or x = a, where the external applied load acts.
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zw

Z'W

Figure 2.5. Flat Plate Element

On substituting the displacement functions assumed, the equilibrium equations

reduce to:

R 1 R12 rR13 U

R21 R2 2  rR 2 3  V = 0 (17)

31 32  R 33  W

A nontrivial solution is obtained from:

R11 R12 RI3

I DT= R21  R2 R3 =0 (18)

R3 R32 R33
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where

RII =-A 11 ( m2 +A 6 6 (-)

= (A12 + A ) * (m

B m3 m Pi2
13 = Bl1 )3  12 662B) (a).

R2 1 = -R12

(19)

22 2 A 66, 2

R23 = (2 + 2 B)() 2  ()- 22 (T

R31 = -R 13

R32 = R23

S+ D1 (-) - (2D 12 +4D46 )( 2 + D22 )
R33 -N11 " 2 2 2 622

ro

The determinant DT of Equation (18) when expanded will yield an 8th order

polynomial in p. containing only even powers of p, i.e.

8 6 4 2
K8 pi +K 6 pi +K 4Pi + K2 i + KO = 0 (20)
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Thus IDT = 0, when solved yields eight values of pi, which are real or

complex. When complex, they always appear as conjugate pairs. Using these

Pi values in Equations (16), it is seen that the displacement functions satisfy the

equilibrium equations of the flat plate element.

Also, through Equations (17), U. and V. in Equations (16) can be expressed in
I I

terms of W. as:
I

Ui = r L2Wi (21)

Vi = r Lli W (22)

where

R23 Rl R 13 R21
Li R - R (21a)
ii R12  R2 1 - R2 2  R11

and

R13 R22- R23 R12 (22a)

L2i R21 R12 2 R22 I (22)

It may be noted that when B = 0 (i.e., no coupling between bending and

stretching) the equilibrium Equations (12) and (13) contain only u and v terms

and the Equation (14) contains only w terms. Thus, for this case u and v are

independent of w. Instead of a single 8th order polynomial, Equation (20), one

thus has:

(a) a separate fourth order polynomial in pui resulting from

11  12

IDTU =  =0 (23)

R2 R222.20
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The p ui values are to be used for the displacements u and v of

Equation (16), the summation extending from 1 to 4.

One can also express V. in terms of U. as
I I

Vi L3iU i  (24)

where

R11 R21
L (243i R R3 R 12 22

(b) another fourth order polynomial in pwi resulting from

D j= R 33= 0 (25

The p wi values are to be used for the displacement w of Equation (16),

the summation extending from 1 to 4.

Using of these pui and pwi values, thus satisfies the respective equilibrium

equations of the flat plate element when B. = 0.

For a given level of axial load, N11 Ib/in., in the flat plate element, the

buckling displacements and the corresponding forces at any point in the neutral

plane can now be readily calculated from Equations (16) and (15). When B.. O,

the Pi values from Equation (18) are used. When B.. = 0, the Pui values from

Equation: (23) are used in u and v displacements and the p . values from Equation

(25) are used in the w displacement.
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2.4.4 Forces and Displacements of Flat Plate Elements

In the buckling analysis the inter-element continuity and equilibrium are enforced along

the junction line between the elements. These lines are in general off-set from the

neutral plane and parallel to the longitudinal axis of the flat plate element. In this

section the displacements and forces involved along the two sides of the flat plate

element are considered in detail. They are initially derived with reference to the

local coordinates in the neutral plane, from the equations given in Section 2.4.3. See

Figure 2.6. They are then transferred to the off-set junction line. Finally they are

transformed to the chosen global axes system.

The flat plate element displacements involved are:

w, w y, u, v (26)

The plate element forces involved are:

am 2 2 + 12
-Q z= + 2-. , M2 2 , N 12 ' N22 (27)

Figure 2.6 shows these displacements and forces in the neutral plane along the side

y = +b/2 of the flat plate element.

The forces in Equation (27), can be expressed in terms of the assumed buckling dis-
placements through Equations (7), (8), and (16).

Page 2.22



1,x 1,x 12v ,x
22

w 2 Q,y = w 5 2,yly
S E E

3,z 3,z

FIGURE 2.6. Flat Plate Element Displacements and Forces
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When B.. / 0 (i.e. there is coupling between bending and stretching) all the
II

quantities can be expressed in terms of W. (i = 1 to 8) through Equations (21)
I

and (22). Also involved are the eight p. values obtained from Equation (18).
When B.. = 0, (i.e. no coupling), as stated in Section 2.3.3, the u and v

II
displacements are independent of w. In this case V. can be expressed in

terms of U.. See Equation (24). Thus all the quantities can be expressed in

terms of U. and W. (i = 1 to 4). Also involved are the four p ui values

obtained from Equation (23) and the four Pwi values obtained from Equation (25).

Finally, the displacements and forces involved in Equations (26) and (27) can be

written as below:

CASE 1. B.. 0:

= m rx
a

rP Y

a

8 8
w = 1 W. sin 6 e6 = w o.W. sin 6 (28)

i=1 =1 '

8 rP . 8
w = W. - * sin e = 1 IW. si n 8 (29)

Y i=1 I a i=1

8 8
u = L W.i • r L cos6 e = t.W. cos . (30)

8 8
v = = W. r L sin eB = p.W. sin ()

i=1 L i=1 s'
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Q 2= [ -812 "L 2 ; +22L1 i 2 + 2 2

Pim P
- D223 - 2B66( -- L2 2 . Lli)

+ 4D •e2 W e * sin 6]66ca

8
= 1 q Wi sin 6 (32)

i=1

8 p' 2 . 2

8

8

= ' (m22)W sin ci 6 (33)i=1,

jNei=l

Z '(n12)iW cOs P ;(34)
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N 2 2  l12m L2 +A 2 2  L i + B 2 ( B2 2  2

W. i r 2  e e sin 61

8
= L (n22)iWi sin 3 (35)

i=1

The quantities defined by wi,' i' i' Pi' qi' (m22)i (nl2)i'
and (n2 2 )i are self evident from the above equations (Bij 7 0).
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CASE II. B. =0:

a

TPuiY

rPwiY

#62 a

4 62 4
w = I W. sin 6 e = l .W. sin 6 (36)

i=1 i=1

4 rpi 02 4
w = W. i  W.sin 5 = 6 4wWisin d (37)
y i=1 a i=1

4 Bl 4
u =  U. cos6 e =1 uiU cosa (38)

i=1 i=1

4 b1 4
v =  L3U i sin e = 2 p. Ui sin J (3.9)

i=1 , i=1

Q = [ D2m2 wi Pwi3 2wi sin]

i=1

4
= I q wiVsin 6 (40)
I=1
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M4 ') 2  2 92 62
22 1 D - D22( ) W *e sin 61

4
= 1 (m2 2 ) Wisin 6 (41)

i=1

4 p 
N 2 [ m L3 )66 U. * e cos 62 i= 1

4
= L (n12 )uiU i cos 6 (42)

i= 1

N22 =. I 12 a + A 2 2  .. I

4
= , (n2 2 )iUi sin 6 (44
i=1

The quantities defined by wwl' wl' 'ui' pul' qwi t (m22 )wt (n12)ui, and
(n22)ui are self-evident from the above equations (Bi1 = 0).

Putting y = +b/2 in the above equations yield the displacements and forces along the
two sides of the flat plate element, with reference to the local axes and In the neutral
plane. The element width to be used in calculating these displacements and forces is
evident from the idealization of the structure into elements, as discussed in Section 2.3.

The above displacements and forces are now transferred to the inter-element junction
line, which in general is off-set from the neutral plane. This transformation is purely
a geometrical, rigid-body transfer.

Page 2.28



Let y o , zo be the off-sets to this line measured positive in the positive directions of
y and z axis, from the sides (y = +b/2 or y = -b/2) of the flat plate element.

These off-sets as defined above are measured from the neutral plane, as shown in

Figure 2.7. Since the neutral plane is not initially known, the program input off-set

in the z direction is measured from the "top surface" of the flat plate element. The

"top surface" is the outer surface of the flat plate element on the negative z axis
side. The program then internally calculates the true off-set z .

0

SIXs

x

Neutral
plane z

Yo

I F z

FIGURE 2.7. Off-Sets on Flat Plate Elements
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A subscript 's' is used to designate the quantities with respect to the off-set axis,

The displacements with respect to the off-set axis are then given by:

w =w+y .w
s o y

8 =W =w
s, y. 'Y (44)

V =V-ZW
s o ,y

u =u - zw - y v
S oX o X

The forces with respect to the same off-set axis are given by:

(M22)s 22 + yQ - zN 2 2

(Q)i =Q - z * N
So 1 2,x

(N2  45)
°(N 1)S". .rN 12

(N 2 2 ) N 22 y N 12

All the quantities in Equations (44) and (45) are defined by Equations (28) to

(35) when B / 0 and by Equations (36) to (43) when Bi = 0, except u ,SI y
W,x , and N12,x . These are readily obtained after appropriate differentiation of

u, w, and N12. Thus when Bii / 0:

mr 8 Tr
V W. r L cosS e W i ( Pl cos6

(46)
8 8

v = W. r L(-) cos e I . W (-)P cos

w x W. * (m-) cos .eg = Z w. (--) * P. cos 6',x i=1 a i=1  a
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8 Pi m
N 8 W. [A 6 6(- L + )2B.

12,x 66 2i a li 66 a

a (46)

8
= - 1 W. (-)(n ). sin5

S I a 12i=1

and when B.. =0:

,x i1 L3 1 U (.) cosb e UI P os

.4 M2 4
w = W.- ) cos e =e W. (-)W, cos6

x i=1 i= 1  w

P (47)

4 p u
N U. ( L) (-)sin6 e

4
Mir

=- Ui )(n 12)sin 6

After making the above substitutions, Equation (44), giving the displacements of the flat

plate element with respect to the off-set axis becomes:

(a) When B1i A 0

.8
ws = + YI + Y)W sin

1=1

8

s = ws,y 1 W sin (48)
1=1

p ' ?i



8

v = (P - zo )W. sin

(48)

8

us Z - Zy I r I Cos 6
i=1

or, written in matrix form,

w W
xs 1

s

Bs .I(49)

v I I 4x8

u W
s. 8

i.e.,

IdpSI = [Xl]tRI (50)

where IdpSI and I(R1 are self-evident.

(b) When Bij = 0

4
w 1 (€wl +Yo )Wi sin

s =1

4

s = w : W. sin 6s sy wi=1  s (51)

4
v = * (PiU. - z o WW)sin 6

P=1
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4
u = .. - z (W. -y ()P.U.lcos (51)ui wi Yo(ai=1 l

Or, written in matrix form,

ws  W1

as  Xl W

v (4 x 8) (2)
s 4

u . U

i .e.,

Idpsl = IXllI1*1 (53)

where I(R* is self-evident.

In a similar manner Equation (45) giving the forces of the flat plate element with re-

spect to the off-set axis becomes:

(a) When B1i / 0

8

(M22)s = [(m2 2)1 + Yoqi - o(n 2 2)i]W i sin
=1

8

(Q)s = 1 [qi + zo(nl2)( 1 )]W sin 61=1

(54)

(N1 2)s  . (n12) iW cos
i=1

8
(N 22)1 = L [(n22  + y (n12) 1  W sin &

I=1
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Or, written in matrix form,

(M22) s  W1

Q X • 2s 2 • (55)

(N12) 4 x 8

(N 2 2 )s, L W

i.e.,

ifpsI = [X211R 1  (56)

where JfpSl is self-evident.

(b) When Bi = 0

4

(M22)s = [(m22)wiWi + oqwii - Zo(n22)uiUi sin 6
i=1

4
(Q)s [qwiW + Zo(n1 2)u (--)Ulsin 6

i =1 (57)

4
(N 12)s = (n 12 )uiU cos 6

i=1

4

(N 22 )s = L (n2 2 )ui + Yo(n 12 )ui( )Ui sin6
i=1

Or, written in matrix form:
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(M2 2 )s WI

Q X *s 2 W= 4 (58)
(N1 2)s  (4 x 8) U1I

(N22)s U4

i.e.,

SfPS [X2*]Rk* (59)

Thus, when B.. A 0, Equations (50) and (56) and when B.. = 0, Equations (53) and (59)
II II

give the displacements and forces of the flat plate element along the off-set axis

(Figure 2.7) and with respect to the off-set local axes, x , y , and zs. Since the

angle between the elements is arbitrary, it Is convenient to transform these to a global

coordinate system so that consistent displacements and forces can be matched for con-

tinuity and equilibrium. Figure 2.8 shows the neutral plane AB of a flat plate element.

For clarity the local x axis in the neutral plane and the parallel xs axis at the off-set

points are not shown. X, Y, Z are the global axes. 0 is the angle measured positive

in the clockwise direction from the global Y axis to the local y axis.

(M22)G X, uG , (N12)G

G

Y, vG' (N22)G

z, w z 0 B (y b/2)

Ys. w , 0 G zs.
FIGURE 2.8. Global Coordinate System for Flat Plate Elements
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Subscript G is used to identify the quantities referred to the global axes. Their

positive directions are as indicated in Figure 2.8.

The four displacements of Equation (44) on transformation to the global axes become:

WG cos i 0 sin 0 0 w

eG 0 1 0 0 (60)
G s (60)

vG -sin S' 0 cos 0. v

UG 0 0 0 1 u

Or, written in contracted form:

IdpG = [Td](dpS (61)

In the following superscripts + and - are used with the various matrix and vector

designations to differentiate the corresponding quantities along the sides y = +b/2

and y - b/2, respectively. For the side y = +b/2, thus, IdPG , (X1 ], etc.,

are designated IdpG I, [X1 +1, etc. Similarly, IdpGI), 'XI-], etc., refer to the

side y = - b/2.

When B.. A 0, substitution of Equation (50) in Equation (61) yields:

(dPG+ = [Td][X l 16) (y = + b/2) 
(62)

= [X3  IR1I

IdpG-) = [Tdl[Xl-] R l
(y = - b/2) (63)

= [X3 - IR 1l
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Similarly when B.. = 0, substitution of Equation (53) in Equation (61) yields:
IJ

|d G} = [TdltXI**]|RI*IPG [T(y = + b/2) (64)
= [X3*41R 1*1

IdpG- I [Tdl[X*-RI* 
(65)

(y = - b/2) (65)

= [X3* IR1 *

In a similar manner, the forces in the local coordinates given by Equation (56) when

B.. 0 and by Equation (59) when B.. = 0, can be transformed to the global axes.

Thus, when B.. , 0:
II

(If = ITf1IX2+](RI(PG [ 2 (y = + b/2) (66)

= [X4+]Rt

fpG- ) = [-Tf][X2-]RI (y = - b/2) (67)

= [X4-]]R 1

and when B.. = 0:

(fPG )= [Tf][X 2* ](R1 (y = + b/2) (68)

= [X4 *+]1RI*

IfpG-j = [-Tf][X2*-] RI*
(y = - b/2) (69)

= [X4 * 1-]R
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In the above equations:

(M2 2 )G

Q

fPG = G (70)
(NI2 G

(N 2 2 )G

and

1 0 0 0

[Tf] 0 cos )k 0 si n (71)

0 0 1 0

0 -sin 1 0 cos j

Also, [-Tf] indicates the transformation matrix [Tf], (Equation (71)), with the signs of

all elements reversed. This is necessitated by the sign convention used for the flat

plate element forces in the local coordinates, (see Figure 2.4), where the positive

forces along the side y = +b/2 have directions opposite to the positive forces along

the side y = -b/2.

When B.. 4 0, Equations (62), (63), (66), and (67) give the displacements and forces

of the flat plate element along the off-set axis, with respect to the global axes. When

B.. = 0, these are given by Equations (64), (65), (68), and (69). All 'X' matrices in
'I

these equations are 4 x 8 in size.
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2.5 Beam Element

Any straight prismatic component of the structure under uniaxial compression, which be-

haves as a beam is defined here as a beam element. Typical examples are lumps of

boron fiber reinforcements between stiffeners in stiffened plates, beads or lips or stiffeners,

corner fillets of extended stiffeners, etc. See Figure 2.9.

2.5.1 Material and Geometry Constants for a Beam Element

Beam elements can in general be layered. Figure 2.10 shows the geometry of two

particular types which are treated in some detail in the next section.

k

For each layer the basic material properties involved are Ell, (the Youngs Modulus in

the axial direction) and G2 3 (the Shear Modulus).

In the case of the rectangular beam all layers are assumed to have the same depth

'b'. The origin of the axes system is for convenience taken at the geometric center

of the bead or flange.
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bead lip corner fillets

Lumps of boron reinforcement between stiffeners

FIGURE 2.9. Typical Examples of Beam Idealization

rk k tk

r

b

2,y 2,y

layer No. k

.4 1layer No. k

3,1z 3, z

FIGURE 2.10. Circular and Rectangular Layered Beams
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2.5.2 Overall Stiffness of a Beam Element

In order to evaluate the forces in the beam element (see Section 2.5.3),, the over-
all stiffnesses (bending stiffness, torsion stiffness, etc.) are needed. With the ex-
ception of the St. Venant torsional stiffness (G23J) of the layered flange, these
are approximated by the sum of the individual layer stiffnesses. Thus:

k k
El = El

E kIk

11 yy k=l 11 yy

Ell b ElA (72)
k=l

= ,k k

P k=i P

Sk is the compressive stress in the kth layer caused by the external loading, the
axial strain over the entire cross-section of the structure under consideration being
constant. See Section 2.8.

For the particular types of layered beams shown In Figure 2.10, the various geometric
properties involved in Equation (72) are detailed in Table 2.1. It Is readily seen
that when all the layers of the rectangular beam are horizontal (vertical layers are
shown In Figure 2.10) it Is sufficient to interchange Ik and Ik in Equation (72).

zz yy
The St. Verant torsional stiffness (G23 J) of the layered circular beam Is approximated
by:
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TABLE 2.1. Geometrki Constants for Circular and Rectangular Layered Beams

Geometric Property Circular Beam Rectangular Beam
of kth Layer

Area:

A r (rk)2- (r )2 bktk

Moment of Inertias:

Ik  (rk)- (r.)4 bktk)3 + A tk -
zz 4 12 b k= 2

tk

k 1 2

k  tk (bk)3

Polar Moment of
Inertia:

k k kI k  Ik  + I
p Izz yy

Warping Constant:

rk  o 1 (bktk)3 **

**Argyris, J. H., and Dunne, P. C., "Handbook of Aeronautics No. 1: Structural
Principles and Data, Part 2," p. 122 and 126, Fourth Edition, The New Era Pub-
lishing Co., London.
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G J= Gk Jk23 23
k=l

where (73)

kk k k

zz yy

For layered rectangular beams an overall G23 value- i evaludted' fr6m the Ilndividual

layer G2 values as:

2 kk
I G23A b
k=l

G23 = k (74)

A b
k=1

The overall torsional stiffness G23J is then approximated using J based on overall
dimensions of the flange. Thus,

bt3  16 t 1t41)4J = . [ - 3.36 * I - )4 * (75)

(NOTE: When t/b > 1 interchange t and b.)

where

k
t=

k=1

**Argyris, J. H., and Dunne, P. C., "Handbook of Aeronautics No. 1:
Structural Principles and Data, Part 2," pps. 122 and 126, Fourth Edition,
The New Era Publishing Co., London.

Page 2.43



2.5.3 Equations for a Beam Element

The basic equations for bending of beams and torsion of beams, including the

effect of axial compression, are used to calculate the forces, due to buckling dis-

placements, along the length of the beam *lement. These displacements and forces
are shown in Figures. 2.11 and 2.12.

The equations given in this section for forces, are with respect to the geometric

center of the beam element.

The total applied end load 7b in the layered beam element;is given by:

Sk k
7b Ab 76)

k=l

1,x, u

S2,y,v

3,z, w

Figure 2.11. Displacements of Beam Element
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2,y 2,y

1,x 1,x

3,z 3,z

dT d

qz "Torque/unit length -Variation of End Load

2, y 2, y

3, z 3, z

dT dP
-x Torque/unit length "ix -Variation of End Load

(End Load due to u)

Figure :2.12. Forces on Beam Element
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The expressions for the vertical shear qz and the lateral shear q (see

Figure 2.12) are obtained from beam theory (shear effects ignored). Refer:

Timoshenko, S. P., Gere, J. M., "Theory of Elastic Stability," McGraw-

Hill, 2nd Edition, 1961, p. 2.

d4w d2w
qz = Ell +Pb'

(77)

= E I Z dx + d2qy 1E Izz b 2

The expression for the torque dT /dx is obtained from torsion theory of beams,

including warping effects. Refer: Argyris, J. H., Dunne, P. C., Handbook of

Aeronautics No. 1: Structural Principles and Data, Part II, New Era Publishing

Co., London, 4th Edition, p. 140.

dT d4 d 20 d 2GdTx = d4J d2g d2)
-= (Ell 4 G 23  d2 p d 2  (78)

dx dx dx

B is the twist of the beam element. For a circular beam, the first and the last

terms on the right-hand side of Equation (78) are zero. For a rectangular beam

the effect of these terms are small. However, they are retained as the program

has the capability to allow for any type of beam, by giving r, J, and I

as inputs.

Axial displacement (u), of the beam element, caused by the buckling deformation

gives rise to end load P . The rate of change of this end load is given by:

dP d2u
u du
xU =-Ell Ab 7- (79)

dx
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The following, general buckling displacement functions are assumed for the beam element:

w =W sin 6

v =V sin 6

(80)u =U cos 8

0 = Osin 6

where

_ mrx

These functions automatically satisfy the simply supported boundary conditions

along the edges x = 0 or a, where the external applied load acts.

For a given level of axial load, Pb, in the beam element, the forces (Figure 2.12)
due to the buckling displacements of Equation (80) can be readily calculated from
Equations (77) to (79). These forces are with respect to the local axes, x, y, z.

2.5.4 Forces and Displacements of Beam Elements

In this section the forces in the beam elements due to the buckling displacements of
Equation (80) are initially evaluated at the geometric center with respect to the local
axes. See Figure 2.12.

As for the flat plate elements in Section 2.4.4, these displacements and forces to be
used for inter-element continuity and equilibrium, are then transferred to an off-set
axis, before finally transforming them to the global axes system.
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The beam element displacements involved are:

w, u, v (81)

The beam element forces involved are:

dT dPq q
z' dx' d ' y

Equations (77), (78), and (79) of Section 2.5.3 give the forces referred to an

axes system at the geometric center of beam element section. The displacements

are also referred to the same axes. See Figures 2.11 ahd 212.

By substitution, all quantities are expressed in terms of the displacements,

Equation (80). Thus, from Equations (77) to (79):

q = [E I (' -")4 -1 W - sin 6 = W  sin 6z 11 yy a b a 1

mr.4 - mr 
Cy = [E Izz P4 V sin = V s in6

dTT [El I'w4 + G2J --- I mr2 " 0 sin 6 = f2 sin 6

dP
E11 Ab (-)21U cos 6 = U f3 cos 6
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In satisfying the inter-element considerations, it is necessary to appropriately

transfer these beam element forces and displacements to the line (parallel to
x-axis) along which compatibility is enforced.

Let, the off-sets to this line measured positive in the positive directions from
the origin of the beam element be y and z . See Figure 2.13.

x

off-set axis

Y,
z

Figure 2.13. Beam Element Off-Sets
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Using the subscript 's' to denote the quantities with respect to the shifted axes system,

the displacements of the beam element become:

ws w + Yo

8 =0

(84)

V =V-z 0.
s o

u =u-z *w -y v
s o ,X 0 ,X

After substitution from Equation (80), the above equations become:

ws  0 0 sin 6 y sin a U

Os 0 0 0 sin 6 V
(85)

v 0 sin 6 0 -z sin II W
S 0

u cos -y--)cos] [-(-)cos ] 0 0s oa 0 a j

Or, written in a contracted form:

(dBS = [IXSIR 2 1 (86)

where [X5 ] is a 4 x 4 matrix.

Similarly, the forces on the beam element are transferred to the off-set axes as:

dT dT
(-x) = _ x + . z - .
dx s dx + qy o - z Yo
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d2p

(qz s z + " z
dx

dP dP
U 7U

dx (87)

d2p
2

( s y dx Y

On substitution from (83) the above equations become:

dT

'x s 0 [Zo 4 sin 8] [-Yo Isin b]  [f 2 sin U

(qz)s [-Zo 3(-)sin 6l 0 [l 1sin 6] 0 V

(88)
dP
dP [ 3 cos 6] 0 0 0 W

(q )s -Y3( )sin 6 ]  [f4sin 6 0 0 0

Or, written in the contracted form:

fBS = [X6 ]1R21 (89)

[X6 ] is a 4 x 4 matrix and its elements are functions of the external load Pb on the

beam element.

Equations (86) and (89) give the displacements and forces of the beam element with

respect to the local axes xs, ys, zs (Figure 2.13). Their positive directions are the

same as those shown in Figure 2.12.
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As done for the flat plate element, in Section 2.4.4, these displacements and forces

are now transformed to the global axes. The positive directions of displacements and

forces with respect to the global axes are the same as in Figure 2.8, where the angle

V, is now the angle between the global Y axis and the local y axis of the beam ele-

ment, measured positive in the clockwise direction.

Using subscript G to denote the quantities with respect to the global axes, the beam

element displacements given by Equation (86) are transformed as:

IdBG1 = [Td]IdBS = LTd][X 5 fR2 I = [X7 it21 (90)

where

wG
W G

Id BG1 G (91)
vG

UG

The transformation matrix [Td ] is the same as in Equation (61). [X7] is a 4 x 4 matrix.

In a similar manner the beam element forces given by Equation (89) are transformed to

the global axes as:

tfBG lTf]BS} = [Tfi[X 6 ]1R2  = [X8 IR2 I (92)

where

(M2 2 )G

SfBG t =  (93)
(N1 2 )G

(N 2 2 )G
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The transformation matrix [Tf] is the same as in Equation (71). [X8 is a 4 x 4 matrix.

Thus Equations (90) and (92) give the displacements and forces of beam elements along

the off-set axis, with respect to the global axes.
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2.6 Inter-Element Displacement Continuity and Force Equilibrium

In this section, the displacements and forces of the flat plate and beam elements de-

rived in Section 2.4.4 and 2.5.4, with respect to the global axes, are used to illus-

trate the principle of enforcing inter-element continuity and equilibrium.

Figure 2.14 shows a typical junction of three flat plate elements (1), (3), and (4)

and a beam element (2). The dashed line is the outer contour of each element. The

neutral plane of each element is indicated by the continuous line. Point B is the geometric

center of the beam element. The angle 0, is measured positive in the clockwise direction

from the global Y axis to the local y axis of each element.

X, UG, (N1 2)G

M22)G

Y, vG' (N22)G

N /
, wG  G / z

z \
B

FIGURE 2.14. A Typical Junction of Elements
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For the purpose of illustration, the axial line through B is chosen for enforcing inter-

element continuity and equilibrium. Consequently the beam element has zero off-sets.

In the program, whenever beam elements are encountered the identical line through

the beam element is chosen for inter-element matching, thereby having to input only

the off-sets for the flat plate elements.

Table 2.2 shows the forces and displacements involved in the inter-element matching

and the corresponding equation numbers, for the typical junction shown in Figure 2.14.

Since there are no external loads or constraints at the junction, the force equilltfrium

at B yields:

PG 1  + ( iBG (2) + |fPG (3) + tfPG-1(4)=  (94)

and inter-element continuity yields:

ldpG-(1) = fdBG (2) = dpG}(3 ) = fdpG-( 4 ) (95)

The subscripts (1), (2), (3), and (4) denote the element numbers as shown in Figure

2.14. Using the equations shown in Table 2.2, Equations (94) and (95) can be written

in matrix form, assuming B.. $ 0 for all flat plate elements, as:

[X4-](1 )  [Xg]( 2) IX4 1( 3 ) [X4 -](4 ) R1 (1)

[X3-(1 )  -[X7 ](2)  1R2 (2)
= 0 (96)

[X7 (2 ) -[X 3 (3) IR( 3 )

[X 3+](3) -[X3- (4 ) 1(4)
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TABLE 2.2.

Forces and Displacements for Inter-Element Matching

at the Junction in Figure 2.14

Element Force and Displacement Equation Number

No. Expression
B.. 0 B.. =0

(dPG- (63) (65)

(1) & (4)

(fpG- (67) (69)

(dpG + (62) (64)

(3)
(fpG + 1 (66) (68)

IfBG }  (92)
(2)

IdBG' (90)
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Similar equations can be readily written when one or more flat plate elements have

Bij = 0. A junction of elements could also be elastically restrained, clamped or

simply supported.

These variations are not included in the present program. The reference quoted in

Section 2.0 gives the analysis when the junction is elastically restrained.
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2.7 Boundary Conditions along any Unloaded Edge of Flat Plate Element

Any unloaded edge of a flat plate element can, in general, be free, clamped, or

simply supported.

The forces and displacements associated with these boundary conditions are those with

respect to the neutral plane of the flat plate element. By putting 4, = y = z = 0,
in the appropriate equations of Section 2.4.4, the forces and displacements at either

side of the flat plate element are readily obtained.

(a) Free Edge

The forces along a free edge are zero. Hence ifpG+1 = 0, or (fpG- = 0.

Thus, when BIj / 0, Equations (66) and (67) yield:

[X4 ] {R1  = 0 or [X4 -]R 1  = 0 (97)

S z =0 #-y z =0o 0 0 o

y = + b/2 y = -b/2

Similarly, when Bij = 0, Equations (68) and (69) yield:

[X4 *+'RI =0 or [X 4 *-IR1  =0 (98)

y z =0 &y =z =0o 0 o o

y = +b/2 y =-b/2

(b) Clamped Edge

The boundary conditions are:

(i) w 0

(ii) w =0

, y (99)
(lii) u = 0 or N =012

(Iv) N2 2  0 or v = 0
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For conditions (iii) and (iv), the first of each are used in the program. In the

above equations, when B.. 0, substitution from Equations (28) to (30) and

Equation (35) results in

[X g9 +R 1  = 0 or [X9g-1 RI = 0 (100)

y = +b/2 y =-b/2

Similarly, when B.. = 0, substitution from Equations (36) to (38) and Equation

(43) results in:

[X9 *+11R 1* 0 or [X9 -]R 1 * = 0 (101)

y = + b/2 y = -b/2

(c) Simply Supported Edge

The classical simple support conditions are w = M22 = u = N22 0. When

B. . 0, substitution from Equations (28), (33), (30), and (35) results in:

IX 10'11R 1i = 0 or [XI 01o-R1  = 0 (102)

y = +b/2 y =-b/2

Similarly, when B.. = 0, substitution from Equations (36), (41), (38), and (43)

results in:

[X1o*+1R 1 I = 0 or [XIO *-]RI* = 0 (103)

y = + b/2 y = -b/2

The unloaded edges of a flat plate element can also be elastically restrained. This is,
however, not included in the present program. The analysis for this case is given in the

reference quoted in Section 2.0.
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2.8 Buckling Load and Buckled Form of the Structure under Uniaxial Compression

The principle of inter-element matching discussed in Section 2.6 and the equations for

the boundary conditions along any unloaded side of the flat plate element derived in

Section 2.7, are applied in this section, to determine the uniaxial compressive buckling

load of the structure. For easy reference, the basic equations used are collected in

Table 2.3. It is pointed out that all the displacements and forces referred to are those

due to the buckling deformation.

The first example considered is the arbitrary structure shown in Figure 2.1. The edge

y = - b/2 of element (1) is assumed to be simply supported and the edge y = +b/2 of

the element (7) is assumed to be clamped. Assuming B.. A 0 for all flat plate elements,

considerations of the above boundary conditions and those of inter-element matching,

using Table 2.3, result in the following equations:

(1) (2) (3) (4) (5) (6) (7) (8)

4 R1(1)
X+ -X3 "I

X4+ X R1(2)

X3+ -X7---- ------ ------ R
----- -7_

____i-3 "2(3)

X+ X IX

SX3 -X3(4)

x x 4 - R1(5)

X 3  -X3  -

-- ,I 3- _X3- ,' 1(6

x - + x - ()

X 

4 4 1 R

I

------ ------ 1--(8)

3 3

SX +  8
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TABLE 2.3

Summary of Flat Plate Element and Beam Element

Equations Used in Buckling Equations

Force or Equation Size of
Displacement No. BI Matrix [X] Remarks

(X (R, ) (62), (63) B..$0 4 x 8
d (62),(63) B 4 x 8 Flat plate element

PG (X3 1+ R I 1  (64),(65) B.. = 0 4 x 8 displacement

t [X4 ±]RI) (66),(67) Bi.j0 4 x 8 Flat plate element

[X4 1 ]R I ) (68),(69) B =0 4 x 8 forces

Beam element
IdBGI [X7 1 R2  1 (90) 4 x 4 displacements

I fBG I  [X 8 R2 1 (92) -4 x 4 Beam element forces

[X4 ]RI1I =0 (97) B I  0 4 x 8 Free edge along the

S R = (98) B.. 4 x 8 unloaded side of the
[X4  ]|R1  = (98) B.. -0 4 x 8

4 1 'I flat plate element

[x9 ']R 1l = 0 (100) B.. 0 4 x 8 Clamped along the

- *+ * (10unloaded side of the
9  1  B 0 4 x 8 flat plate element

[X loR±= 0o (102) B.. O 4 x 8

10I  Simply supported along
_- *10"1ta the unloaded side of the

,X !R } = ( (103) B.. = 0 4 x 810(103) B 0 4 x 8 flat plate element
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The numbers in parenthesis are the element numbers, the same as in Figure 2.1.

Or, written in contracted form:

[XB]RB = 0 (105)

A similar equation can be easily written when B.. = 0 for one or more flat plate elements.
II

The matrix [XB] is square and in this case of size 56 x 56. In general [XBI Is nx n

where

n = (8 x number of flat plate elements + 4 x number of beam elements)

A nontrivial solution of Equation (105) is obtained when the determinant

IXB = 0 (106)

IXBI is called the "buckling determinant" of the structure. It can be readily verified

that a common factor of sin6 or cosd where = mrx/a can be taken out of each row

of IXB and ignored.

The various terms of the "buckling determiaant" involve, in addition to the geometric and

material properties of flat plate elements and beam elements:

(a) Axial half-wave number m which is assumed to be the same for all elements.

(b) When Bi ? 0 the pi values for each flat plate element from Equation (18), or

when Bij = 0, the Pui and Pwi values from Equatioes (23) and (25). These roots

are, in general, a function of the external load level Nll In each flat plate

element.

(c) The external load level Pb in each beam element.
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The load level in each element of the structure as discussed above, is determined on the

basis of uniform axial strain. In the present program, a load level (i 1)( j) is assumed

on the first flat plate element, (j) denoting the element number. The first flat plate

element need not be the first element in the structure. The corresponding axial strain

e11 is evaluated from:

o ( I (i)
"11 =  k (107)

k=1 (i)
11

The load level in any other flat plate element (n) corresponding to this strain is then

obtained from:

kk

Similarly, the applied axial compressive stress k , corresponding to the same axial

strain e 1, in any layer k of the beam element is:

-k o ka = ll Ell (109)

w -k

Knowing the load per unit width N11 on all flat plate elements and the stress k in
all layers of the beam elements, the total load on the structure can be readily evaluated.

As mentioned earlier, the various terms in the "buckling determinant, " IXB are functions

of the external load level. Hence the buckling load is obtained from Equation (106), by
iteration. An axial mode m (the same for all the elements) and an initial Food level
(Nll)(j) in the first flat plate element is assumed. The load levels in all the other ele-
ments are evaluated. Corresponding to these load levels for each flat plate elements, when
Bj 0, Equation (18) is solved for the pi values or when B81 = 0, Equations (23) and (25)
are solved for Pui and Pwl values. The "buckling determinant" IXBI is formed and evalu-
ated. If it is nonzero, the above procedure is repeated in steps, increasing the load level
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at each step, until lowest axial load at which the "buckling determinant" vanishes is

determined. This is, then, the buckling load for the assumed axial mode m. The initial

assumed load level must be sufficiently low, so as to ensure that the lowest buckling

load is not missed, for any assumed m. The buckled shape of the cross-section as

determined from the eigenvector (discussed later in this section), might indicate whether

the buckling load determined is the lowest one or not. Buckling loads for a series of

axial modes are evaluated and the minimum determined.

Double roots from Equation (18) or Equations (23) and (25) cause two columns of the

matrix [XB] in Equation (105) to be identical. This difficulty is overcome by identi-

fying within close limits, the load level yielding double roots and ignoring this small

load Interval. The roots when complex, occur in conjugatepairs. Using the conjugate

pair of roots in [X I results in "conjugate columns."

For the purpose of determining the buckling load, each pair of "conjugate columns" in

the "buckling determinant" can be converted Into a column of only real numbers and a

column of only imaginary numbers, by a process of addition and subtraction. By taking

a common factor i(=vl) outside, for each column of imaginary numbers, the buckling

determinant Is made to contain only real numbers.

Further, it can be readily shown that in Equation (105) those elements of the vector

fRB1 corresponding to a pair of "conjugate columns" in [XB , will be conjugates, too.

This property is made use of in solving for the eigenvector corresponding to the buckling

load, In order to evaluate the buckled form of the cross-section. By multiplying out

Sand adding like terms in each equation of Equation (104), it can be rewritten such that

the new matrix corresponding to IXB] and the new vector corresponding to (R Ceoni

only real terms. Each pair of conjugate elements of the original vector RgBI will be re-

placed by its real part and its imaginary part. The new system of equations containtig

only real terms, are solved to obtain the modified vector IRB), by inverse iteration as

indicated In Appendix A. The original vector IRB) of Equation (105) can be readily ob-

tained from this. The buckled form of the cross-section, then follows, from the displace-

ment equations of Section 2.4.4 and 2.5.3.
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A second example considered is that of a hat-section stiffened plate shown in Figure 2.2.

The stiffener dimensions and their spacing is repetitive. In the figure, the numbers in

parentheses are the element numbers and the dots indicate the inter-element junctions.

The two unloaded sides of the panel are assumed to be simply supported. The equations

for inter-element continuity and equilibrium, together with those for the boundary condi-

tions along the unloaded sides of the stiffened plate, can be written in a manner similar

to Equation (104). Repetitive nature of the stiffeners in this example is taken advantage

of in writing these equations. The equations for the stiffened plate can be considered to

consist of three basic parts; namely,

(1) A set of equations, designated as [T ]Ra, for the left side of the stiffened plate,

representing the boundary conditions along the first dot and the inter-element con-

ditions along the next five dots in Figure 2.2 involving elements (1) to (7). The

dots are counted from the left side of the stiffened plate.

(ii) A second set of equations, designated as [Tb]1Rb, for a repetitive unit, representing

the inter-element conditions along the next six dots (i.e., dots 7 to 12, both inclu-

sive), involving elements (7) to (14). The number of repetitions of this repetitive

unit, in this example, will be one less than the total number of stiffeners, since

the first stiffener has already been taken into account under (i).

(iii) A third set of equations, designated as [Tc Rc, for the right side of the stiffened

plate, representing the conditions along the last two dots, involving elements (28)

and (29).

A repetitive unit consists of a certain number of inter-element junctions, together

with any unloaded edges, which repeat themselves. Using Table 2.3, these equa-

tions can be written as:
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-
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II
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c c . - -

SI . I
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Equation (110), appropriate number of repetitions of Equation (I11) and Equation (112)

together yield the complete set of equations for the hat-stiffened plate. Since there

are elements common to adjacent units, like elements (7), (14), (28), etc., it is easy

to see that the vectors IRa , IRb , and JRcJ will be overlapping each other with com-

mon terms. Thus for the four stiffener case of Figure 2.2, the equations can be written

In the following form:

Ti RT I Ra I O

I, b = 0 (113)

T RI c C
L-

Or, written in a contracted form:

[XBIRB = 0 (114)

This is the same as Equation (105) of the first example.

The two dotted lines between Ra, Rb, etc., in Equation (113) indicates the overlap be-

tween them as mentioned earlier. X B]I is a square matrix. The determination of the

critical load and the corresponding buckled form of the cross-section, from Equation (114)

follows identical lines as described for Equation (105).

It is seen that the matrix [XB] is banded and contains repetitive submatrices [Tbl. This

property is taken advantage of in evaluating the buckling determinant IXBI for critical

load evaluation. The method is discussed in Appendix A.
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Buckling load of any other structure under uniaxial compression can be determined in a

similar manner. As mentioned above, the present program assumes the "buckling determi-

nant" IXBI to be banded. This precludes any structure where the first and last elements

are inter-connected, in which case the banded property is lost.

It is important to note that the buckling loads and the corresponding eigen-modes are

determined from a general instability analysis, in that no restrictions are placed on the

buckling deformation of the cross-section (except that the angles between elements re-

main unchanged). The eigen-modes are indicative of overall or local nature of in-

stability. In contrast the classical buckling analysis assumes restricted deformation of

the cross-section as in flexural (Euler) mode, torsional mode, local mode, etc. Such

simplifying restrictions can sometimes result in missing the lowest buckling load.

Attention is also drawn to the fact that the loaded edge of each element making up the

structure is assumed to be simply supported. Thus each flat plate element has a line

condition of simple support and each beam element a point condition of simple support

at the loaded edges. Thus for structures of complex cross-sectional shape, the overall

end conditions in the present analysis will be different compared to the conventional

Euler instability theory, where the structure as a whole is idealized to a line member

and simply supported, resulting in a point condition of simple support at the loaded ends.

The effect of this will be small when the axial half-wave length of buckling is small

compared to the length of the structure.

Finally, the discussion in Section 2.3 regarding the beam idealization is once again

emphasized.
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2.9 Differences in Matrix Designations between Theory and Program

As shown in Section 2.8, for any structure of uniform cross-section and under uniaxial

compression, the final buckling equation (e.g., Equations (105) and (114)), is systema-

tically built-up from the flat plate and beam element equations summarized in Table

2.3. The [X] matrices in this table are designated in the program with type numbers.

Table 2.4 shows the one to one correspondence between the [X] matrices and the type

numbers. Note the minus sign in front of some of matrices.
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TABLE 2.4

Matrix Designations in the Theory and the Corresponding

Matrix Type Numbers Used in the Program

Matrix Designation Matrix Type
in the Theory Number in the
(From Table 2.3) Program

[X3 , [X3 ] 33 3-

[X] , 1iX4  2

[X,] 7

-[X7 9

[X ]  8,10

Ix9+1, [X *+ 14

iX9 -, IX9 ] 12

[Xo 1], [Xlo ]* 13

[Xl0, [Xlo ] 11
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3.0 OVERALL LOGICAL FLOW OF PROGRAM

S0325Ay/BU CLASP

START

Was an

End-Of-File Yes
encountered?

No

Read and
preprocess data

CALL. OVERLAY(BUCLASP, 1,0)

Yes ata checking

No

Compute. Critical
Buckling Load

and Mode
CALL OVERLAY(BUCLASP, 2, 0)

No Eigenvector
wanted?

Yes

Eigenvector and
relative displacements

CALL EXIT
CALL OVERLAY(BLCLASP,3, 0) EXIT

FINISH
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3.1 Logical Flow of Overlay for Data Preprocessing

DATAPRO

Enter

Initialize

Read/Wri te
Controls, Constants, Geometry

Boundary Conditions

Loop on Elements

Beam el.. Kind of
element?

P plate el. Subroutine MACON

Read/Wri teReLamina m roperties . Establish Engineering Constants
Sfor a filamentary composite

Put material constants in---
, . fcr&w

Compute stiffness matrices

Read/Wri te
Beam element datat

St elastic constants

Read/Write offsets

ompute cross-section geometry

Establish control matrices defining
subpartitioning of buckling det.

Modify control matrices for non-
standard bourndary conditions and

-lack he thi mratlices into one.

Pagetu 3.2
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3.2 Logical Flow of Overlay fdr Load Solution

SOADING

C Enter

Initialize limits for loop on modes

Loop on r o eineDGF.i 1

longitudinal Evaluate real I Generate elements of I
nmodes M I determinant from Iemodes M I n buckling determinant Ipartitioned matrix.

Buckling det. for initial
load (reset after found double root) /

L -Function DBIcrement load -- -o
I Establish valuel nI -

Buckling de. -o- i of buckling u1 1 otine RGEN-
incremented load ) determinant

I---- --- J (Generate R-matrix I

Double /
root?

Yes i
ubouble P r.u tine "ZA KJ

,Yes root loc.ted* i IFind complex root
S of equilibrium r

,icose lt I I Funcion DT 1
'equatio -s -I- uo s I Determinant expresy

No J sion for equilibriuni

Decrease load increment I Lequatons I

ign change?---
/.Flnction CDT M
I Evaluate complex

Yes I determinant

Incremen - , - - - -
- small enough?

subIo.t.e- aUDJZER4
I Interpolate the loadi

No Iwithin the given
Decrease load increment Iinterval.

Lnterpolate final load

NOTE: The logic shown here represents

hnd of loop options 0, 1, 2 for loop on modes.

on mode M Logic for option 3 is not shown
but it is essentially the same

Write final results logic as applied to several modes
at the same time.

Return
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3.3 Logical Flow of Overlay for Eigenvector Solution

DISPLAC

Find addresses of determinant blocks
as stored by overlay for loads r BANDW

[ Subroutine 1AN-W
IFinds bandwidths of
each block and selects'

Find overall bandwidths of -- the maximum.
buckling determinant L

Compute and print
array soace requirements

SfSubroutine COMPAC 1 Subrouine TURN

I Store banded determi- I I Move one row later-I

Put matrix (A) on a form compatible -- nant so that rows are row ally in determinant.

with eigenvector routine land diagonals columns

Solve Eigenvector -- - Subroutine EIGV Su b rotine BLU

Decompose matrix and ' Find factors L and
iterate 3 times on the U such that A= LUi
eigenvector.

Subroutine FBSUB

'Solve Ax = b as

Ly = b, Ux = y
L.

\ Subroutine DISCompute relative displacements bro i
From eigenvector com-1

ipute displacement of m
Ithe elements.

Return
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4.0 COMPUTER PROGRAM USAGE

This section describes the program from a standpoint of usage and describes the required
control cards as well as the requirements to field length and timing. Specifications are
also given for the card oreparation.

4.1 Machine Requirements

This program is developed using the CDC 6600 computers at the Boeing Company in
Renton, Washington, and requires peripheral equipment as follows:

a. Card reader
b. Line printer
c. Tape drive (if program is supplied on tape)
d. Disk - scratch storage space

The program has been written with the intent of compatibility with the CDC 6600
computer installation at NASA, Langley Research Center.

4.2 Operating System

The operating system used is the Boeing version of SCOPE 3.1. The program is written
in FORTRAN IV and for the sake of easy conversion no special features of the Boeing
Company compoter software have been used.

4.3 Timing and Output Estimates

Time consumption for one data set depends on various factors:

a. Number of modes that are investigated for each data set.

b. Number of plate elements and beam elements required to build up the cross-section
The size of the buckling determinant is proportional to total number of elements
and for cases with large number of element a large part of the computer time is
used for determinant evaluation.

c. Number of plate elements of the same type, in the sense that their plate stiffnesses
are the same. For plate elements of the same tyoe the solution of the equilibrium
equations will be the same and therefore a time saving occurs.
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d. Number of plate elements which are symmetric laminates, for instance isotropic
elements. For symmetric laminates two of the four roots of the equilibrium equations
are independent of the trial load for the same mode, and this is taken advantage of
as these two equations are not resolved for each load.

e. Choice of option for the loop on the modes m.. A time saving will take place when
the option is used where the loop on modes is done for each trial load and apparent
noncritical modes are eliminated from the search as early as possible.

f. A guess value of the load must be provided which is smaller than the actual
critical load to be found. If this starting value is close to the critical load a time
saving would occur.

The actual computer time consumption for some of the test cases run for program checkout
are quoted in the following table (TABLE 4.3.1) and this information can be used for
arriving at a time estimate.

In geineral for single data set runs, and with the intermediate printout switch off, the
program will not generate printed output in excess of the default option line limit of
100008 (4096 decimal). However, if many data sets are run this line limit can easily
be reached and thus it is recommended that the line limit be increased to 1000008 or
2000008 during compilation (See Section 3.6), or in the load card.

The average run with one data set, and 2 modes requires from 30 to 100 pages of print,
when the intermediate output is suppressed.

If intermediate output is desired, the amount of output will vary considerably according
to the relation between startload, location of double roots in the DT-determinant, and
the critical load, but the amount is so large the intermediate printout feature is not
recommended used except for trouble shocting.
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TABLE 4.3.1 Computer Time Consumption - Load Evaluation

Order of CP Time
Data Set Buckling No. of Total (sec.) for No. of trial loads CP-time per trial

Det. Modes CP Time Critical for critical mode load
(sec.) Mode (sec.)

Test 5 170 1 94.0 92.2 67 1.37

Test 2A 216 4 289. 85.2 51 1.67

Test 2B 216 4 533.8 170.0 98 1.73

Test 4A 200 3 70.4 18.6 16 1.16

Test 4B 104 4 46.4 10.5 25 0.42

Test 6A 200 1 41.6 40.5 49 0.83

Test 8 288 1 71.0 68. 36 1.89

Test 3A 24 5 15.1 1.6 12 0.13

Test 3B 24 5 55.9 11.5 78 0.15

Test 3C 20 6 9.6 1.2 17 0.07
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4.4 Programmed Diagnostic Messages

MESSAGE: COMMENT:

Main Program LOADING

1. Above are'50 tries without change Arrays are getting filled up, so we reset
in sign. Double load increment their contents and index to zero. Doubling
and start over again. of load increment increases speed in ob-

taining the critical load.

2. Limit for number of DB-calls of 400 Self-explanatory. We have to stop some-
is exceeded, extrapolate for load. where.
Note answer is not reliable. It is
recommended that you review your Stop computation on this mode, and continue
data for a possible change of start to the next one, if any.
load and load intervals.

3. Warning - a double root in p - Self-explanatory. Appears only when
investigate the load region up to intermediate print is switched on.
this double root.

4. The first load examined after passing Self-explanatory. Subsequent load is in-
the double real roots did not pro- creased by a small amoont.
duce significant difference between
the roots. Perturb load and try
again.

5. The startload was too close to double Self-explanatory. Subsequent load is in-
real roots. Perturb load and try creased by small amount.
again.

Page 4.4



MESSAGE: COMMENT:

Subroutine Function DB

1. ZARK failed to converge in the The complex rootfinder ZARK returned an
maximum number of iterations error code. Increase maximum number of
specified. iterations given in program for ZARK.

(300 presently) Change startload.

2. ZARK failed - a zero in the path The complex rootfinder ZARK returned an
of a subsequent one. error code. See Section 3.8 of Program

Description Document.. Change startload.

3. An error appeared in the P-values. The DT-determinant in polynomial form
A complex root that is not one of comes out in only even powers of P (the
a conjugate pair. roots). The roots of this polynomial must

then contain only real roots and conjugate
pai rs.

NOTE:

The comments above in the DB-routine related to the ZARK routine does not appear
in normal use of the program, as they are incompatible with the theory. However,
If they should appear, see Section 3.8 of Program Desctiption Documenit.

Subroutine BLKDET:

i. The matrix A (B or C) has a zero See Section 3.6 of Program Description
row. Document for explanation of this routine.

2. Matrix sizes or relative positions
are incompatible.

3. Zero determinant at block X.
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4.5 Restrictions

The following restrictions apply to this version of the program.

4.5.1 Analysis Oriented Restrictions

a. The loading is uniaxial compression, with uniform strain across the cross-section.

b. Each layer is orthotropic with respect to plate axes.

c. Material is fully elastic.

d. The cross-section is uniform in the axial direction.

e. Loaded edges of each element forming the cross-section are simply supported.

4.5.2 Programming Oriented Restrictions

For restrictions pertaining to the mathematical routines, see attached descriptions of
these (ZARK, BLKDET, CDTM, DETZER, EIGV, BLU, FBSUB).

a. Maximum number of elements required to describe the three blocks is 25, and
the maximum number of nodes is 20. Maximum number of elements in any block is 14.

b. Maximum number of types of plate elements is 10. These are of the same type
in the sense that their stiffness matrices are of the same contents.

c. The maximum number of layers is 25 for plate elements.

d. Maximum number of beam elements is 10.

e. The maximum number of layers is 35 for beam elements.

f. The critical load is located within a load interval os size equal to 1.0% of lower
limit of the load interval for loads less than 50 Ibs/in. and an interval of 5 Ibs/in.
for loads larger than 50 lbs/in. before the interpolation routine is used.

g. The tolerance for the interpolation routine DETZER is set to 10- 8 times the load.

h. If the load increment is less than 0.5% of the load then the spotchecks are not
done. Spotcheck means that the last two intervals will be subdivided to check
when it is suspected that a critical load is bypassed.
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i. If the ratio between slopes of the buckling determinant function for two subsequent
intervals is less than 5 then the spotcheck is also abandoned.

j. The double roots of determinant expression det(DT) = 0 are located within a load
interval of size equal to 0.1% of the lower limit of the load interval (det(DT) = 0
is the determinant expression for the equilibrium equations). For loads larger than
50 lbs. 0.04% is used.

k. Two real roots of the determinant expression det(DT) = 0 are considered double
if they differ by less than 3%.

I. The imaginary part of the complex roots of the determinant expression det(DT) = 0
is set exactly to zero if its numerical value is less than 10-6, or when it is less
than 10- 5 times the real part of the number. A similar test applies to the real
part of the number.

m. There is no coupling between bending and stretching when the B-matrix (coupling
stiffness) is zero. All the elements of the B-matrix are checked and the matrix
is assumed to be zero when all its elements are less than 1.0.

n. Care must be exercised in choosing start load and load step for the iteration pro-
cess. For instance startload obviously must be smaller than the critical load and
load step be small enough to prevent two zero crossings of the buckling determinant
in the interval. For the data run to check the program a primary load step of
20 Ibs/in. is found to be satisfactory.

o. Maximum number of modes that can be investigated in one data set is 30.
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4.6 Operating System Control Cards

4.6.1 Via Source Deck

Col. 1 on cards

Job Control Record Sequence Card
Job Card
Account Card
RUN(S,,,,,, 200000,, 1)
LGO.
789 (end-of-record card)
9

Program-Source Deck Source Deck

89

Data *Data Cards
67 (end-of-file card)
8

4.6.2 Via Relocatable Binary Deck

Col. 1 on cards

Job Control Record Sequence Card
Job Card
Account Card
INPUT.

89

Binary Decks Binary Decks

89

89

Data *Data Cards
6

89

*NOTE: Repeated data sets do not require End-of-Record cards between them.
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4.6.3 Via Absolute Binary Tape

Col. 1 on cards

Job Control Record Sequence Card
Job Card
Account Card
REQUEST TAPEA. (66-DXXX, MOUNT/I NPUT)
REWI ND(TAPEA)
COPY BF(TAPEA, BUCLASP)
UNLOAD(TAPEA)
DROPFIL(TAPEA)
BUCLASP.
EXIT.
UN LOAD(TAPEA)
789 (end-of-record card)

Data *Data
67 (end-of-file card)

89

NOTE: The tape number used will correspond to the tape allocated for the program
at the installation in question. If the program occupies a file on the tape
other than the first the tape should be positioned accordingly.

*NOTE: Repeated data sets to not require End-Of-Record cards between them.
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4.6.4 Field Length

The field length estimate required for this program depends upon the data set that is

run as the array space for the buckling determinant is allocated in a dynamic manner
in blank common. The same is also true for the buckling determinant as stored in a

compact banded manner in the 'overlay for eigenvector solution.

Upon the execution of a particular data set the program will compute and print estimates
of the field length required for the load solution as well as the eigenvector solution,
something which can be used in later runs.

In Table 4.6.1 below are given field lengths for some of the test cases.

When the eigenvector and relative displacements are also wanted the user must consider
if the field length is long enough for the eigenvector overlay to accomodate all the

repetitive blocks of the buckling determinant as the full determinant is stored on a

compact banded form. For the loading overlay the field length requirement does not
increase with an increased number of blocks as only three blocks are stored.
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TABLE 4.6.1 Field Lengths

Number of Maximum

Data Set Overlay (2.0) Overlay (3.0) Blocks in Governing Number of
Loading Displacements Buckling Overlay Blocks in

Determinant 70K

Test 2A 644008 662008 7 (3.0) 7

Test 2B 644008 662008 7 (3.0) 7

Test 3A 522008 310008 3 (2.0) 26

Test 3B 522008 310008 3 (2.0) 26

Test 3C 515008 304008 3 (2.0) 38

Test 4A 642008 623008 6 (2.0) 7

Test 4B 531008 375008 6 (2.0) 24
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4.7 Input Data Format

The data input to this program consists only of cards, and no data tapes are required.

CARD 1 (8A10)

Cols.

1-80 Title of run. Any characters anywhere on the card. This title is printed
out in several strategic places inthe output for the purpose of identification.

CARD 2 (1615) IPC Control Array

Cols.

1-5 IPC(1) = 1 Give print of intermediate results (I).
= blank Suppress intermediate results (I).

These intermediate check results (I) include the roots P of the determinant
expression det(DT) = 0 (equilibrium equations).

6-10 IPC(2) = 1 Give print of intermediate results (II).
= blank Suppress intermediate results (II).

Intermediate check results (II) include the DB matrix and its determinant
(boundary conditions, buckling determinant).

76-80 IPC(16) = 1 Calculate only elastic constants, lamina stiffness matrix,
Q, plate stiffness matrices A, B, D for a case when fiber
and matrix properties are given, or if for any other reason
only the material constants are required.

CARD 3 (1615)

Cols.

1-5 JPC(1) Panel type identification number. (See TABLE 4.7.1)
Blank for nonstandard types, i.e. when JPC(4) =.1.

6-10 JPC(2) Number of blocks that the buckling determinant is partitioned
into. Includes two end blocks plus the repetive blocks. Cases
with start block only or startblock and endblock only are per-
mitted. (See Section 3.6 of Program Descriotion Document.)
See Section 5.2 regarding checkout of this item.
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Cols.

11-15 JPC(3) = 0 (blank) No relative displacements.
= I Relative displacements will be computed if the available

core allows it.

16-20 JPC(4) = 0 (blank) Buckling determinant type matrices are set up
internally.

= I Read in buckling determinant type matrices. See
CARD 17 and 18.

CARD 4 (1615)

Cols.

1-5 MMI Starting value for the loop on the: longitudinal buckling
mode M.

6-10 MMA End value for the loop on the longitudinal buckling mode M.

11-15 MOPT Option control for the loop on the buckling mode M. Four
options exist:

= 0 or blank, start loop at I and loop until a minimum load
is found, then interrupt (Max. 30 loops).

= I Start the loop at MMI and loop until a minimum load is
found, then interrupt (Max. 30 loops).

= 2 Start the loop at MMI and loop to MMA regardless of whether
a minimum load is found or not.

= 3 Under this option, the loop on modes is done for each load-
step. Instead of finding the critical load for each mode in
order to select the smallest load, when a sign change occurs
in one or more modes, the program eliminates modes which
do not give sign change, as these modes are not critical.
Finally, only the critical mode remains and the load is
found for this mode. This option should be used when only
the buckling load for the critical mode is wanted. Con-
siderable time can be saved in cases when many modes have
to be investigated. See Section 5.2 regarding checkout of
this option.

NOTE: The arrays are dimensioned so that MMA - MMI 4 30.
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CARD 5 (3110,4F10.2)

Cols.

1-10 LL Number of plate elements in the section (i.e. in start block,
one repetitive block and end block).

11-20 LB Number of beam elements in the section (i.e. in start block,
one repetitive block and end block).

21-30 NOD Number of nodes in the section (i.e. in start block, one
repetitive block and end block).

31-40 AL Length of the section (inches).

41-50 STLD Starting load in the search for the critical load (Ib/in.).
(See note for explanation.)

51-60 SINC Primary load interval (Ib/in.). (See note.)

61-70 SINC2 Secondary load interval (lb/in.). (See note.)

NOTE: The loads STLD, SINC, and SINC2 are given as line loads on the first
element of the section. We start with a load equal to STLD and increase
it with step of size SINC until a change in the sign of the DB-determinant
will occur. Using the last load before the sign change as a new start load,
we now increment the load by SINC2 until the zero-crossing is encountered
again. From this point on the same procedure is repeated, and the incre-
ment halved each time, until the critical load (zero-crossing of DB) is lo-
cated closely enough for the specified tolerance. Obviously the starting
load must be less than the critical load. Also in some cases the initial
load increments should not be set too high, as the buckling determinant
then could change sign twice within one interval. Judgement will have
to be used here, and it might be worthwhile to re-evaluate these after
a first trial run.

LL, LB, NOD - these variables must correspond exactly to the number of
elements and nodes shown in Table 4.7.1.

CARD 6 (8F10.2)

This card gives the coordinates for one node and is repeated in sequence of the nodes
for all nodes. See Figures 4.7.1 to 4.7.5.

Cols.

1-10 ZOR(J) Z-coordinate of node J in right-handed global coordinate system.

11-20 YOR(J) Y-coordinate of node J in right-handed global coordinate system.
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CARD 7 (315,5X,5F10.2)

This card is repeated once for each element in the sequence of the elements and gives
the nodes to which it is connected. For beam elements only one node is given.

Cols.

1-5 INP(IL,1) Node I of element no. IL. See Section 4.7.2.

6-10 INP(IL,2) Node J of element no. IL. Omit this value for beam elements.

11-15 IET(IL) Type of element:
= 1 Plate element
= 2 Beam element

CARD 8 (315,5X,5F10.2)

Cols.

1-5 NBCON Number of nonstandard boundary conditions including total
number of beam elements to be entered. Use blank card
when all boundary conditions are standard (see Card 9) and
no beam elements. When buckling determinant is read in
(JPC(4) = 1), NBCON = the number of beam elements only.

CARD 9 (315,5X,5F10.2)

The standard boundary condition is free edge, along the unloaded sides or junction
between plate elements but on this card others can be specified. Repeat this card
NBCON times (previous card). Omit if NBCON is zero.

Cols.

1-5 NODE Node of plate element for which the nonstandard boundary
condition is specified. Or, in the case of beam elements,
the node 6f the beam element.

6-10 IBCOT = 1 Node is simply support (plate element)
= 2 Node is clamped (plate element)
= -X where 'X' is the number of the plate element to which

the beam element is attached.

CARD 10 (110,7F10.2)

In the loop on elements the sequence of CARD 10 to 12 is used for plate elements.
CARD 13 and 14 are used for beam elements.

Cols.

1-10 L(I) Number of laminas in plate element No. I.
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CARD 11 (9F8.2,4X, 14)

This card gives the thickness and material properties for one layer so therefore pro-
vide one Card Type 11 for each layer in the laminate. The layers have to be given
in sequence starting from a reference plane, which is located at the surface of the
plate element that correspond to the negative z-axis in the local coordinate system.

The properties can be entered in 4 different ways according to the option control
in cols. 77-80.

a. Give the engineering constants Ell, E22, )12, G12 for orthotropic laminas
when known. For isotropic laminas E22 need not be given.

b. Give fiber and matrix properties and volume fraction coefficient. Continguity
factors have no change for this lamina. See Card Type 12.

c. Same as (b) but contiguity factors change, so set control for later read. See
Card Type 12. If continguity factors are not given for the first lamina they
assume values of zero, until another Card Type 12 is entered.

d. Give the lamina stiffness matrix Q directly.

Cols.

1-8 T Thickness of lamina (in.).

9-16 Ell, Ell E-modulus (option 0).
= EF E-modulus for fibers (option 1 and 2).
= Qll Element of lamina stiffness matrix, Q (option 3).

17-24 E22, E22 E-modulus for direction 2 (option 0). E22 need not be
entered for isotropic laminas. (blank)

= GF G-modulus for fibers (option 1 and 2).
= Q12 Element of lamina stiffness matrix, Q (option 3).

25-32 RNUA, RNUA Poisson's ratio 12 (option 0).
= ZMUF Poisson's ratio for the fibers (option I and 2).
= Q22 Element of lamina stiffness matrix, Q (option 3).

33-40 G12, G12 G-modulus (option 0).
= EM E-modulus for matrix material (option 1 and 2).
= Q66 Element of lamina stiffness matrix, Q (option 3).

41-48 GM Shear modulus for matrix material (option 1 and 2 only).

49-56 ZMUM Poisson's ratio for matrix material (option 1 and 2 only).
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Cgls.
57-64 VFC Volumn fraction coefficient of fibers (option 1 and 2 only).

65-72 ANGLE Angle of the ply in degrees. Only 0O and t900 are permitted
for full buckling calculations. Any angle can be used when only
material properties are calculated (option 1' and 2 only). See
CARD 2, cols. 76-80.

73-76 NOT USED

77-80 CO Option control. There are 4 choices:

(opt. 0) CO = 0 Give elastic constants Ell, ' 12, G12 for isotropic
laminas, for orthotropic laminas give also E22.

(opt. 1) CO = 1 Give the properties of the laminas in terms of fiber
and matrix properties. Contiguity factors are not
changed for this lamina.

(opt. 2) CO = 2 The same as Option 1, but the contiguity factors
changed for this lamina.

(opt. 3) CO = 3 Give the lamina stiffness matrix, Q, directly.

CARD 12 (8F10.2)

This card contains the contiguity factors CONTI and CONT2 to be used when a
layer's properties are given as matrix and fiber properties. This card will follow the
material properties-card which has the flag CO set to 2 (Card Type 11). Subsequent
layers will use the same contiguity factors unless a change is introduced with another
CARD 11 with the appropriate flag CO = 2. If no CARD 12 is used CONTI and
CONT2 will be set to zero and if constant contiguity factors other than zero are re-
quired then enter them with the first orthotropic lamina.

Cols.

1-8 CONTI Contiguity factor to be used for computation of G-modulus and v12.

9-16 CONT2 Contiguity factor to be used for computation of E22 modulus.
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NOTE: The formulae used for calculation of material constants when matrix and
fiber properties are known have been taken from:

Tsai, S. W., "Structural Behavior of Composite Materials,"
NASA-CR-71, Section 2.0 (1964)

and
Ashton, J. E., Halpin, J. C., Petit, P. E., "Primer on
Composite Materials: Analysis Progress in Material Science
Series," Vol. III, Chapter 2.3, Technomic Publications, 1969.

CARD 13 (9F8.2,214)

This card gives the dimensions and material properties for a beam element (sequence
10 to 12 is used for plate elements). Three types of beam elements are permitted
according to an option control (see cols. 72-80 of this card for description). These
types are: general beam element (of any shape), rectangular, and circular. The
latter two may also be laminated, with up to 25 laminas, in which case this card
gives only the thickness and properties of the first lamina, (inner lamina in the case
of circular) the number of laminas and offsets. Card Type 14 gives the information
for the other laminas.

Cols.

1-8 EB E-modulus of beam element in longitudinal direction.

9-16 GB G-modulus of beam element material.

17-24 AFB, as AFB Area of beam element (option 0).

or TB Thickness of the first lamina of the rectangular beam
(option 1). The thickness is the dimension of the beam
element measured parallel to the local y-axis. See
Figure 2.10.

or RB Outer radius of the first lamina of the laminated circular
beam element (option 2). For a hollow circular beam
element the hollow part forms the first lamina, with zero
E and G moduli.

25-32 RIYB as RIYB Moment of inertia about yy-axis (option 0).

or WB Width of beam element (option 1).

33-40 RIZB Moment of inertia about zz-axis (option 0 only).
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Cols.

41-48 RGAM Warping constant for beam element (option 0 only).
The program sets the polar moment of inertia RIP
equal to RIYB + RIZB.

49-56 RJB Torsion constant of bead or tip (option 0 only).

57-64 ALFX Angle between the local y-axis of beam element and the global
Y-axis, (measured clockwise, from the global Y-axis).

65-72 NOT USED

73-76 NLAM Number of layers if laminated beam element (option 1 and 2
only) ( 35)

77-80 CO2 Option Control. The geometry and material constants of the
beam element can be input in three different ways:

= 0 In this option the program does not distinguish between the type
of beam element as all the section properties are calculated and
entered by the user. No laminated beam elements are permitted
under this option.

= 1 A beam element of rectangular cross section. Enter the thick-
ness and width and the program will establish the beam element
cross section properties.

= 2 A circular beam element (bead) is used. Enter the radius, and
section properties are computed.

CARD 14 (9F8.2,214)

This card is used only in connection with laminated beam elements and furnishes the
thickness and properties for laminas other than the first one. For laminated circular
beam elements, the inner most lamina is the first lamina.
Cols.

1-8 EXX(IR, I) E-modulus of lamina No. I of beam 6lement No. IR in longitudinal
direction.

9-16 BGA(I) G-modulus for lamina No. I of beam element mterial.

17-24 TBA(l) Thickness of lamina No. I of rectangular beam element. In the
case of circular beam element this gives the radius to outside of
lamina No. I.
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CARD 15 (1615)

Cols.

1-5 ISTOF Number of elements with nonstandard offsets for plate elements;
i.e., elements where a plane different than the midplane is used.

CARD 16 (15,3F10.2)

Repeat this card for each dlement affected and omit if ISTOF = 0.

Cols.

1-5 ILN Element number.

6-15 OFF Offset z in the local z direction at the starting end (y =-b/2)
of the plate element measured positive in the positive z direc-
tion, from the negative z surface of the element to the grid.
See Note below.

16-25 OFF2 Offset Yo in the local y direction at the starting end (y =-b/2)
of the plate element, measured positive in the positive y direc-
tion, from the end of the element to the grid. See Note below.

26-35 OFF3 Offset zo at the end y =+b/2 of the plate element. Measured
similarly to OFFI.

36-45 OFF4 Offset yo at the end y =+b/2 of the plate element. Measured
similarly to OFF2.

NOTE 1:

The grid defines the cross-section such that the plate elements are represented by lines
which normally runs along the midplane of each plate element. Nonstandard offsets are
read in to define elements where this is not possible, for instance the case of two ele-
ments which meet at 1800 but are not flush with each other. See Figures 4.7.1 to
4.7.5 and Section 4.7.3.

NOTE 2:

The offsets to be used when the plate element has a beam element adjacent to it are
measured in a similar way but they are measured to the geometric center of the beam
element.
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CARD 17 (1615)

Dimensions of type matrices for buckling determinant blocks. Omit if JPC(4) = 0.

Cols.

1-5 IDAl Number of columns in type matrix ITYPA. Firt Block
6-10 IDA2 Number of rows in type matrix ITYPA. i

11-15 IDMI Number of columns in type matrix ITYPM. } Repetition Blocks
16-20 IDM2 Number of rows in type matrix ITYPM. or Mid-Block
21-25 IDB1 Number of columns in type matrix ITYPB. Last Block
26-30 IDB2 Number of rows in type matrix ITYPB.
31-35 IOLX Overlap between ITYPA and ITYPM and between ITYPM and

ITYPB. (NOTE: The blocks must be structured such that
their overlaps are equal.)

CARD 18 (1615)

Repeat for each successive row of ITYPA-ITYPM, and ITYPB matrices. Omit if JPC(4) = 0

Cols.

1-5 ITYPA(1, 1)
6-10 ITYPA(1,2)

11-15 Etc.

Use similar card type for ITYPM and ITYPB.
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4.7.1 :Data Card Sequence

For a typical problem the cards are stacked in the following sequence:

Title Card ........... ............... Card typel
Controls, intermediate print, etc. . . . . . . . . . . . . . . . 2
Panel type, number of blocks, displace. opt. cont., type matrix control 3
Axial mode, limits, options . . . . . . . . . . . . . . . . . . . . 4
No. of plate elements, beam elements, nodes, length, startload,

load intervals ............. .......... 5
Coordinates - one card per node . ...... J .... . ... 6
Element data - one card per element . ............... 7
Number of nonstandard boundary conditions . ........... . 8
Boundary conditions ........................... 9

------ ----- ----- ---

Number of laminas .................... . . . 10
Thickness, material properties, option for plate element. . . . . . . I
Contiguity factors . . . . . . . . . . . . . . . .. ... . . . . . 12

Repeat sequence A as required by number of laminas in current plate
element and change in contiguity factors.

C

Use sequence C for plate elements in the section.

Beam element (if any) properties, geometry, and option . . . . . . . .13
Beam element properties for laminas other than the first if beam

element is laminated . ... . .. . ............. 14

Repeat Card 14 as required by number of laminas. Sequence B is used only
for beam elements.

Number of nonstandard offsets ............. . . . ..... . 15
Offsets . . . . . . . . . . . . . . . . . . . . . . . .... . . 16
Dimensions of type matrices to be read ......... ... .. . 17

Type matrices ITYPA, ITYPM, ITYPB . ............... 18

NOTE:

The lamina properties cards for the plate element must be stacked sequentially in the
direction of the positive z-axis of the local coordioate system for the element. The
orientation of local coordinate systems are demonstrated in Figure 4.7.1 to 4.7.5.
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TABLE 4.7.1

STANDARD TYPES OF PANELS

Type Description First Block Repetitive Block Last Block
No.

10 Corrugated Plate G

20 Corrugated Core
Sandwich

30 Truss Cord Sandwich /

40 Honeycomb Core Sand-
wich with reinforcements 

3

50 Integral Panel /

5 7

60 Integral Panel with
6 Tee Stiffeners s o2



TABLE 4.7.1 - continued

STANDARD TYPES OF PANELS

Type Description First Block Repetitive Block Last Block

70 Zee Stiffener Panel9 ,o

2-4 68

D 3@ (3) 5@ @ ®. f193 (3 14

80 Hat Stiffener Panel 2-7 8 -

4 5 o 12z

3 7 6 @iif rs181 Hat Stiffener Panel with 17@

Local Reinforcement 2 @Ds1J 18

90 Angle Stiffener Panel 2 9
with local Reinforcement I+

i( 0 5 75 809(gt2/
91 Angle Stiffener Panel 7 td

with local Reinforcement 13

-UI



4.7.2 Node and Elemenf Numbering System

The table of standard types of panels shows the node numbering system. Each flat plate

element has two nodes (one at each end) and the beam element has one node (at the

geometric center).

A right handed global Y-Z axes is chosen. ( Y). Y axis is made to coincide

with the midplane of one or more of the plate elements. The nodes are numbered in

the increasing Y direction, starting from the left side of the panel. If there are two

nodes at the same Y coordinate (see for example nodes 2 and 3 of the Integral Panel,

Type 50) the nodes at that Y location are numbered In the increasing Z direction. The

table of standard types of panels illustrates the node numbering system for various panels

where the global axes are omitted for clarity. The node numbers are shown uncircled.

The nodal coordinates (Y and Z) with respect to the chosen global axes are now easily

fixed.

Elements are numbered in sequence, proceeding in the increasing order node numbers,

starting with node 1. The element numbers are shown circled in the table of standard

types. Panel types 90 and 91 illustrate the numbering system when beam elements are

involved.

Any other panel can be numbered in a similar way.

4.7.3 Local Coordinates and Off-Sets Yo and zo

Local y axis is chosen in the increasing direction of node numbers of the ends of the

plate element. See Figure 4.7.1.

The local y-z axes form a right handed system.
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n~ore U node

FIGURE 4..7.1

yo positive (fo icr, ) 0 negative (for element )

z positive for both elements Q and

C) and G) pcte elcrnts

2 beam elemet

FIGURE 4.7.2

z off-sets
0

8ET-__ _ 4.. -- -; --- - - .... )__ ,_,

midplane of element Q

FIGURE 4.7.3
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The off-set z is measured positive from the negative z surface of the element, in the

positive z direction. The off-set yo is measured positive from the end y = + b/2 or

y =- b/2, in the positive y direction.

These off-sets are used when the nodes are not in the mid-plane of the element. (Note:

Nodes are fixed with respect to global axes.)

When there are beam elements involved, the off-sets are given for the adjacent plate

elements. (See Figure 4.7.2)

The off-sets when plate elements of different thicknesses meet are illustrated in Fig.

4.7.3.

The z off-sets can either be used on element when the global Y axis is as shown

or on element T (y = + b/2) and on element G (y = - b/2) when the global Y-axis

coincides with midplane of element (.

4.7.4 Buckling Determinant Input (JPC(4) = 1 in Card 3)

Any panel or structural section, of type not covered by the standard type numbers

(Table 4.7.1) can be run on the program by reading in the "buckling determinant."

The general principles of forming the "buckling determinant" are given in Sections 2.8

and 2.9. However, a more detailed description is given in this section together with

typical examples.

After idealizing the structure into flat plate elements and beam elements, the nodal

numbering and the element numbering are done as per Section 4.7.2. The local coordi-

nate system and the off-sets are fixed as per Section 4.7.3.
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Basically, each column of the "buckling determinant" represents a single element of

the structure. The columns are arranged in the order of increasing element numbers.

Each row of the determinant represents either the displacement continuity between

two elements at a time, of all the elements at a junction of elements until the dis-

placemerits of all elements are equated, or the force equilibrium between all the

elements at the junction. Thus 'n' elements at a junction yield (n-1) rows from the

displacement continuity and one row from the force equilibrium considerations. Each

flat plate element at a junction can be individually free (zero forces), simply supported

or clamped. Such condition yields one separate row in the "buckling determinant,"

for each such flat plate element, at the junction. It is pointed out that the minimum

number of elements possible at a junction is one flat plate element, in which case it

is not interconnected to any other element. Also, a beam element is always con-

nected to at least one flat plate element.

The submatrix type numbers given below are used in forming the buckling determinant

(see also Table 2.4).

Type No. Description

1 Displacements at the node I (y = - b/2) of the flat plate element.

(Note: The displacements as given by Type 1 have positive directions

opposite to that of Type 3.)

2 Forces at the node I (y = - b/2) of the flat plate element.

3 Displacements at the node J (y = + b/2) of the flat plate element.

4 Forces at the node J (y = + b/2) of the flat plate element.

Page 4.28



Type No. Description

7 Displacements of a beam element attached to the node I (y = - b/2) of

the flat plate element. (Note: The displacements as given by Type 7

have positive directions, same as Type 3.)

8 Forces of a beam element attached to the node I (y = - b/2) of the, flat

plate element.

9 Displacements of a beam element attached to the node J (y = + b/2)

of the flat plate element. (Note: The displacements as given by Type 9

have positive directions opposite to that of Type 3.)

10 Forces of a beam element attached to the node J (y = + b/2) of the

flat plate element.

11 Simply supported boundary conditions at node I (y = - b/2) of the flat

plate element.

12 Clamped boundary conditions at the node I (y = - b/2) of the flat plate

element.

13 Simply supported boundary conditions at the node J (y = + b/2) of the

flat plate element.

14 Clamped boundary conditions at the node J (y = + b/2) of the flat plate

element.

NOTE: Submatrix Types 2 and 4 also represent the boundary conditions of a free edge
(zero forces) at nodes I (y = - b/2) and J (y = + b/2), respectively, of a
flat plate element.
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The element junctions are considered one at a time. For those elements at a junction

which are individually free, simply supported or clamped, the corresponding submatrix

type number is entered in the column corresponding to the element number in the

"buckling determinant, " each element contributing to a separate row. The inter-

connected elements at the junction are then considered two at a time. The appropriate

displacement submatrix type numbers (1, 3, 7, or 9) are each time entered in one

separate row and in columns corresponding to these two element numbers involved.

When two displacement submatrices of identical type number occur in the same row,

one of them is given a negative sign, e.g.

3 -3 or I -1

After one has thus equated the displacements of all the interconnected elements at a

junction taking two elements at a time, the next row of the "buckling determinant"

is formed from the appropriate force submatrix type numbers (2, 4, 8, or 10) in the

columns corresponding to all the interconnected elements at the junction.

The rest of the "buckling determinant" is then completed in a similar fashion until all

the junctions are covered.

In most cases it is more efficient to divide the buckling determinant into three blocks -

a start block ITYPA, a mid block ITYPM (this can also be the repetitive block repre-

senting the repetitive nature of part of the structure as in a stiffened panel) and end

block ITYPB. For these cases the overlap between the blocks must be the same in

terms of the number of submatrix types. If possible, it is also suggested to make

ITYPA bigger than ITYPM or ITYPB in order to reduce the storage required by the de-

terminant evaluator subroutine BLKDET.
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Three examples are given below to show the "buckling determinant" formed as des-

cribed above.

EXAMPLE 1: All Plate Elements, Figure 4.7.4.

Buckling Determinant:

3 1 3 1

3 1 1 -1
2 2 or 4 2 2
4 4

13 13

The three columns correspond to the 3 elements. The first junction considered (node 1)

has the flat plate element No. O only there. The side y = - b/2 of the element is

simply supported. Hence the type No. 11 in the first row of the first column. The

next junction considered is that at node 2. Flat plate elements , , and

meet at this junction. Two elements are considered at a time. Considering and

first and their appropriate displacement submatrices, yield type 3 in column 1 and

type 1 in column 2 of the second row. Next one can either consider elements

and " or elements and as the next pair. This yields type 3 in column 1

and type 1 in column 3 or type 1 in column 2 and type (-1) in column 3 of the third

row. The displacements of all the elements are thus equated taking two of them at a

time. The next row of the "buckling determinant" is formed from the force submatrix

types of all the elements at the junction under consideration (node 2). This yields the

fourth row with types 4, 2 and 2 in columns 1, 2 and 3, respectively. The next junc-

tion which is node 3 has the flat plate element No.~with a free edge (y =+ b/2).

This yields type 4 in column 2 of row 5. The last junction which is node 4 and has

the flat plate element No. with simply supported edge (y = + b/2) yielding type 13

in column 3 of the last row.
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The "buckling determinant" can be split into 3 blocks, the overlap between the blocks

being the same, as below.

Start Block:
li (1 x 1)

Mid Block:
3 1 3 1
3 1 1 -1

or (4 x 3)
4 2 2 4 2 2

or 4

Last Block:
131 (x i)

Overlap:
1

EXAMPLE 2: Two Plate Elements (O and ) and One Beam Element (O).
(Fig. 4.7.5)

Buckling Determinant:

12 12
3 9 3 9

3 1 or 7 I
4 10 2 4 10 2

14 14

The three columns correspond to the three elements. The first junction considered, i.e.

node 1 yields type 12 in column 1 of the first row. The next junction considered is

at node 3 and is between the flat plate element (, the beam element and the

flat plate element Q.
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The second, third, and fourth rows of the "buckling determinant" are formed by con-

siderations identical to the junction at node 2 of Example 1, the only difference being

that the element No.0is now a beam element. The last junction to be considered is

that at node 4 which yields the type 14 in the last column of the last row.

The "buckling determinant" is finally split into 3 blocks, as below:

Start Block:
2 (l x 1)

Mid Block:
3 9

3 1 or 7 1 (3 x 3)
4 10 2 4 10 2

Last Block:
14 ( x I)

Overlap:

0 2
1 4

y y

z

3

FIGURE 4.7.4
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1 2 © 4

1 --- -

Geometric Center of beam element

FIGURE 4.7.5

EXAMPLE 3: Stiffened Panel

Figure 4.7.6 shows a typical stiffened panel with stiffeners S1 and S2 repeated over the

width of the panel. For the purpose of input to the program, the buckling determinant

is considered to consist of three parts, namely, a start block ITYPA, a repetitive block

ITYPM, and an end block ITYPB. It is pointed out that all repetitive blocks ITYPM

'have elements identical in all respects. This is illustrated in Figure 4.7.6 where two

different ways of forming the blocks are shown, namely, (a) the one shown in the upper

half of the figure and (b) the one shown in the lower half of the figure. The upper

one applies when two outer plate bays have the same width as the plate between adja-

cent stiffeners SI and S2 . The lower one applies when the two outer plate bays have

widths differing from the plate width between adjacent stiffeners S1 and S2.

In forming the "buckling determinant" a "reduced panel" consisting of the start block

ITYPA, one repetitive block ITYPM and the end block ITYPB, as shown in Figure 4.7.7

is considered. This corresponds to the blocks shown in the upper half of Figure 4.7.6.

The node numbers and the element numbers are also shown in Figure 4.7.7.

There are 11 elements in the "reduced panel." Thus the "buckling determinant" has

11 columns.
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(a) ITYPA ITYPM ITYPM iITYPM

SI

I 2 22 I

(b) ITYPA ITYPM ITYPM - ITYPB

FIGURE 4.7.6. Stiffened Panel with Repetitive Stiffeners

ITYPB
ITYPA ITYPM 1

O 4 6 © 10 @
1 12

2 8

5 11

FIGURE 4.7.7. "Reduced Panel" for Program Input

(Note: Circled numbers are element numbers)

C.)



71
8 2

3 1 ITYPA
3 1

2 2

3 -

4 2 2

3 -3

4 4

8 2
13 ITYPM

4 2 2
3-3

- 13 ITYPB

The element junctions are now considered one by one. The first junction which cor-

responds to node I has the flat plate element O there simply supported along y = - b/2.

Hence the type No. 11 is entered in the first column of the first row. The next junc-

tion considered is that corresponding to node 3. The elements at this junction are the

beam element and the flat plate element Q. The displacement submatrix types

7 and 1 are thus entered in the second row in columns corresponding to these element

numbers. Since there are only two elements at this junction, the force submatrix types

8 and 2 are in a similar manner entered in the next row.

The junction considered next corresponds to node 4, and has three flat plate elements

(, ) and . Two elements are considered at a time, till the displacements of

all the elements are equated. Thus the appropriate displacement submatrices of elements

O and are entered in the third row and those for elements and @ in the
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fourth row, in columns corresponding to the element numbers. The choice of element

pair 0 and' is arbitrary. Instead one could choose for the fourth row, the

element pair ( and O, with the appropriate submatrix type numbers in the right

columns. Having thus equated the displacements of all elements at the junction being

considered, the next row is formed from the appropriate force submatrix types of all

elements at the junction, i.e. (, , and (, in their right columns. The rows

7 and 8 are formed in similar manner considering the junction at node 5. The junction

considered next is at node 7 and has the flat plate elements ) and 0 and the beam

element (. The rows 9, 10, and 11 are formed following the same procedure as with

the other junctions. In equating the displacements two by two, the element pair C

and ( are chosen arbitrarily, in row 10. In this choice the beam element D is

attached to the side y = + b/2 of the flat plate element . Hence the type numbers

used for the beam element Q. The rest of the "buckling determinant" is formed in a

similar manner. It is easy to see what forms ITYPA, ITYPM, and ITYPB. The overlap

is alos evident.
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4.8 Output From Program

The output from this program is given only in the form of printed output. First, the
input data is printed out and labeled for easier checking. See Section 4.7 for identi-
fication of input data and Section 6.0 for sample problem.

4.8.1 Geometry

The control information regarding type of section, beam element, and boundary condi-
tions of the section is interpreted and messages printed. The first variable which is
computed and printed out is zn for each plate element. z is the distance from a
reference plane at one surface to an established neutral plane and thus describes its
location. The lamina stiffness matrix Q for each lamina is then printed and after this
comes the A-, B-, and D-matrices for each plate element. The A-matrix represents
the extensional stiffness of the plate element, while the B- and D-matrices are the
coupling stiffness and bending stiffness, respectively. Also the angles between the
plate elements and the actual widths of the plate elements are printed. Three matrices
ITYPA, ITYPM, and ITYPB that identify submatrices of the buckling determinant are
set up and printed.

4.8.2 Buckling Loads

The next phase is the actual buckling calculations. The loop on the specified number
of modes prints out first a label for identification of the mode and then the AB, AB2,
RES, and ICOM arrays.

The AB-array contains the line loads on plate element No. 1 for each trial load in the
search for a critical load while AB2 is used for the total load on the section. RES
contains the respective values of the buckling determinant. ICOM contains appropriate
comments describing the action that was taken at the time by the program.

During the search for a critical load, some loads may give double robts in the solution
of the equilibrium equations. Since the signs of the buckling determinant to either side
of the load which cause the double root are not relevant to each other, this double root
has to be zeroed in. The appropriate messages are printed when this occurs.

After the loops on the modes are completed the buckling loads for all the modes are
printed out. The mode with the lowest buckling load is picked as the critical one and
printed out with its mode. For reasons of identification the title of the run is printed
in strategic places. Timing information is printed for each mode and for the total data
set.
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4.8.3 Eigenvector Output

The overlay for the eigenvector and the relative displacements (3.0) prints first identi-

fication of the data set as given in the title card.

Then the bandwidths are printed. The core requirements for the eigenvector solution

Including the dynamic storage allocation in blank common is shown, for the current

problem together with how many stiffeners can be run for a field length of 70K.

After the buckling determinant has been transformed to a compact banded form and the

decomposition is done the buckling determinant value is printed for checking purposes.

Each iteration of the eigenvector is printed together with the used normalizing factor.

The routine DIS which establishes the relative displacements first prints out the roots of

the equilibrium equations. Thereafter the relative displacements u and v at certain

points across the width of each plate element are printed out together with the local

coordinate y. For beam elements u and v are given for the geometric center of the

cross-section of the beam element.
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5.0 VERIFICATION OF RESULTS

Two types of checks are made to verify the program; namely,

(a) Engineering tests, to correlate the results from the program with results available

in literature (Section 5.1).

(b) Functional tests, to check all major program logic, that is not covered by (a)

(Section 5.2).

5.1 Engineering Tests

As stated earlier, the purpose of the "engineering tests" are to correlate the results

from the program with any results available in literature. For convenience, these tests

are separated into the following groups:

(a) Test problems specified by NASA.

(b) Additional test problem from literature.

5.1.1 Test Problems Specified by NASA

The outline of these test problems as given by NASA are given in Appendix B.

TEST PROBLEM I:

Table 5.1 shows the geometric and material data of a simply supported web with an

orthotropic flange. The basic section is of aluminum alloy and the flange is symmetri-

cally reinforced with boron fiber composite (00). The g.ometry is so chosen that

buckling corresponds to the "local buckling" mode defined in Reference 1 of Appendix B.

The flange and the web are idealized as flat plate elements, as in the reference literature.

Table 5.1 shows the results from the program. Figure 5.1 shows the same results super-

posed on the results from the reference literature.

For the "beam-column" mode of Problem 1 of Appendix B, the following geometry is
used:

b = 1.5 ins.; b = 0.6 ins.
w F

t = 0.05 ins.; t = 0.15 ins.
w F

Length a = 15.0 ins.
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The material properties used are the same as in Table 5.1. The orthotropic flange is
idealized as a beam element and web as a flat plate element, as in Reference 1 of
Appendix B. At buckling, the load per unit width of the web, (N I)w' from the pro-

gram is 835.3 Ib/in. This gives a value of 1.58 for

as against the value of 1.56 quoted by NASA in Appendix B.

Figure 5.2 shows the plot of the buckling mode shape results from the program for the
.'local buckling" mode (X/b = 2.5) and the "beam column" mode.

w

TEST PROBLEM 2:

Figure 5.3 shows the geometry and the material properties of two 600 truss core sandwich
plates. Figure 5.4 shows the results from the program, together with the results from
Reference 2 of Appendix B. Also shown are the plots of the buckling mode shape re-
sults from the program.

TEST PROBLEM 3:

Figure 5.5 gives the geometric data, material data and the results from the program for
two simply supported aluminum alloy plates with a single eccentric boron fiber (00) com-
posite deep stiffener. The results from the program are also shown superposed on the
results from Reference 1 of Appendix B. The plate and the stiffeners are idealized as
flat plate elements as in the reference literature.

Table 5.2 gives the geometric and material data for a series of simply supported aluminum
alloy plates with a single eccentric boron fiber (00) composite shallow stiffener. The re-
suits from the program are tabulated in Table 5.3. It is seen that two sets of values

(I and II) are quoted as results from the program. In both cases the stiffeners are idealized
as beams with G = 0, as in Reference 1 of Appendix B.

23

However, for the results I, the boundary conditions along the unloaded edges of the
plate were w = M2 2 = N 2 = N2 2 = 0, as In the reference literature. Since this com-
bination of boundary conditions is not available in the program, It was altered for one
run only, to check this particular test problem. In Figure 5.6, the results I from the
program are shown superposed on the results from Reference 1 of Appendix B.
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The boundary conditions for the unloaded edges of any simply supported plate, as in

the program are w = M22 = u = N 2 2 = 0 (i.e., u replacing N 12 in the previously

quoted boundary conditions). The results II in Table 5.3 correspond to these boundary
conditions.

Typical buckling mode shape results from the program for simply supported plates with

single eccentric deep and shallow stiffeners, respectively, are shown in Figure 5.7.

TEST PROBLEM 4:

Figure 5.8 shows the cross-sectional geometry and the material data of T-section and

integrally stiffened plates, with six stiffeners on each plate.

The lengths of the plates are so chosen that the buckling mode corresponds to the "local

buckling" mode defined in Reference 4 of Appendix B. Thus, Plate A has a length of

15.0 inches and Plate B a length of 12.3 inches. These stiffened plates are idealized

to consist of flat plate elements only, as in the reference literature. The rosults from

the program including the buckling mode shape are shown in Figure 5.9, together with

the results from Reference 4 of Appendix B.

For "general instability" as defined in Reference 5 of Appendix B, the length of

integrally stiffened plate, Plate B, is increased to 25.0 inches.

Two results are shown in Figure 5.10 for "general instability" of Plate B, one where the

integral stiffeners are idealized as beam elements as in the reference literature and the

other where the stiffeners are idealized as flat plate elements. Results from the reference

literature are also quoted. Buckling mode shapes for these two cases are also shown in

Figure 5.10.

The correlation for the above discussed NASA specified problems are seen to be good.
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5.1.2 Additional Test Problems

The results for a few other test problems, in addition to the NASA test problems dis-
cussed in Section 5.1.1, are given in this section. For easy reference, the numbering
sequence of the test problems are continued from the last section.

The stiffened plates considered are:

(i) Test Problem 5 - Corrugated Core Sandwich Plate
(Ii) Test Problem 6 - Integral Zee Stiffened Plates
(III) Test Problem 7 - Bonded Zee Stiffened Plate
(iv) Test Problem 8 - Hat Stiffened Plate

Figure 5.11 shows the geometry and the material data for these panels. The results
from the program and those from literature are shown in Table 5.4. The correlation Is
seen to be good for Test Problems 5 and 6. The discrepancies in the case of Test Pro-
blems 7 and 8 are attributed to the differences between the literature and the present
theory in the idealization of the flat plate elements consisting of the attached flange
and the skin to which it is attached. In the literature quoted their individual stiff-
nesses are added whereas in the present theory they are treated as a laminated plate
and the overall stiffnesses evaluated, leading to much higher stiffness values. The
Idealization of the literature quoted permits relative sliding of the attached flange and
the skin, which perhaps Is closer to a rivetted connection. The idealization of the
present theory does not allow such relative sliding and assumes perfect bonding between
the attached flange and the skin. This difference In Idealization causes the buckling
stress and the axial half-wave numbers obtained from the program to be higher.

A similar effect has been reported in: Pride, Richard A.; Royster, Dick M.; Gardner,
James E.: "Influence of Various Fabrication Methods on the Compressive Strength of
Titanium Skin-Stringer Panels, " TN D-5389, NASA, August, 1969. In the test results
quoted In this report, the buckling stress of a bonded zee stiffened plate is found to be
about 19% higher than a rivetted zee stiffened plate, which Is very close to the dis-
crepancy in the results for Test Problem 7, in Table 5.4.

The buckling mode shape results from the program for Test Problems 5, 6, and 8 are
shown in Figure 5.12.

The correlation for the test problems discussed in Sections 5.1.1 and 5.1.2 are seen
to be good and demonstrate the engineering accuracy of the program.
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TABLE 5.1

Simply Supported Web with Orthortopic Flange

(Test Problem 1)

Geometric Data: bF
tF

b = 2.0 ins. F

bF = 0.8 ins.
b

t = 0.04 ins.
w

t
tF =3 x tw w
tF 3xt

Material Data:

Aluminum Alloy: Boron Composite:

E11 = E22 =10.5 x 106 psi Ell =30.25 x 106 psi

G12 = 4.03 x 106 psi E22 = 2.03 x 106 psi

12 = 0.3 G23 = G2 = 0.5249 x 106 psi

12 = 0.346

Results from the Program:

/b w  3.0 2.5 2.0 1.33 1.0 .80 .666 .57

(N11)w 665 657 715 902 822 795 833 915
(on web)

k* 4.41 4.354.73 5.97 5.43 5.26 5.51 6.05
w

2
(Ni)w bw

* k

w r2D
w

X = Axial half-wave length of buckle ().
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60

bs4 tf

Geometric Data:

Plate A Plate B

Length a (ins.) 6.0 6.0

b (ins.) 1.0 1.0

tf (ins.) 0.02 0.02

tc (ins.) 0.02 0.01

Total No. of cells 13 13

Material Data:

Ell = E2 2 = 10 x 106 psi

G12 = 3.85 x 106

12 = 0.3

FIGURE 5.3. Truss Core Sandwich Plates Data

(Test Problem 2)
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6 Results from program bFl

Figure 6, Ref. 1 of Appendix B tFf

5 bw
kw r t

W

4

0 I I I I

1 2 3 4

X/b
w

X = Axial half wave length of buckle.

2(N l)wbw

w b

FIGURE 5.1. Simply Supported Web with Orthotropic Flange (~ --- 0.40)

(Test Problem 1) w

I

(a) "Local buckling" mode (b) "Beam-column" mode

(X/b = 2.5)

FIGURE 5.2. Simply Supported Web with Orthotropic Flange - Buckling Mode Shapes

(Test Problem 1)
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Results from Program Critical Stress from
Plate Reference 2 of
No. Critical Stress Axial Half- Appendix B (psi)

(psi) Wave No.

A 16954 7 16920

B 6019 9 6070

Buckling Mode Shape for Plate B - Face Restrains Core

------S ,, -,A-- ,----

Buckling Mode Shape for Plate A - Core Restrains Face

FIGURE 5.4. Results for Truss Core Sandwich Plates

(Test Problem 2)
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Geometric Data:

Length
No. d t m n a

(ins.) (ins.) (ins.)

A 3.0 .048 25.0 2.0 30

B 4.0 .032 75.0 2.0 40

Material Data: Same as in Table 5.1.

Results from Program:

N d2

N

No. p No. of
(Ib/in.) P half-waves

A 314.9 2.70 5

B 27.4 1.42 4

N = critical load (Ib/in.) on the plate

5 -- 2d

S2 t ~nt

Nd
.P. 3

ir D Figure 5, Ref. 1
of Appendix B

2 No. A

o Program results No. B

0 0.1 0.2 0.3 0.4

mt/nd

FIGURE 5.5. Simply Supported Plate with Single Eccentric Deep Stiffener

(Test Problem 3)
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TABLE 5.2

Simply Supported Plate with Single Eccentric

Shallow Stiffener - Data

(Test Problem 3)

b = 8.0 ins. '

t--- c t = .032 ins.

a (length of the plate) = 240.0 ins.

Plate No. 8 C (ins.)

C 2.0 2.0

D 4.0 1.0

E 6.0 0.6667

F 8.0 0.5

G 4.0 0.6667

H 4.0 0.334

I 4.0 0.1668

J 4.0 0.0833

K 4.0 0.0

Material Properties:

Same as in Table 5.1, except G23 = 0 for the stiffener.
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TABLE 5.3

Simply Supported Plate with Single Eccentric Shallow Stiffener - Results

(Test Problem 3)

Results (I) from Program Results (II) from Program
Plate(see note below) (see note below)

Critical Load Axial half-wave Critical Load Axial half-wave
P (Ibs) no. m P (Ibs) no. m

C 337.1 13 367.2 13

D 571.0 9 662.2 9

E 806.8 8 972.1 7

F 1034.8 7 1283.6 6

G 542.4 10 608.7 10

H 495.0 11 527.9 11

I 436.6 13 450.1 13

J 370.6 15 375.1 15

K 155.7 30 155.5 30

NOTE:

(1) Results (I) correspond to the boundary conditions w = M22 = N 12 = N 2 2 = 0
along the unloaded edges. These boundary conditions were specially included
in the program for this particular test problem only.

(2) Results (II) correspond to the boundary conditions w =2 = u = N2 2 
= 0 along

the unloaded edges. These boundary conditions are used in the program for any
simply supported edge.
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5.0 - b

4A/# t

4.0 
_- Figure 4, Ref. 1 of Appendix B

0 Results from program

3.0 2.86

1.02.40

1.0 0.93

0 0.5 1.0 1.5 2.0

EsA/Ebt

Es, E = Young's Modulii of stiffener and plate, respectively, (psi)

A = Stiffener area (in. 2 )
S

N = (Total buckling load on stiffened plateYb (lb/in.)

Neq = Buckling load per unit width on a metal plate of same mass as composite
reinforced plate

FIGURE 5.6. Simply Supported Plate with Single Eccentric Shallow Stiffener

(Test Problem 3)
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(a) Deep Stiffener (Case B of Figure 5.5)

,-----= "";- - - --------- ~-

(b) Shallow Stiffener (Case A of Table 5.2)

FIGURE 5.7. Simply Supported Plate with Single Eccentric

Deep and Shllow Stiffeners - Buckling Mode

Shape (Test Problem 3)
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bb t

w
2b tf

A. Tee Section Stiffened Plate

b = 3.0 ins. t = 0.080 ins.
S S

b = 1.8 ins. t = 0.056 ins..w w

bf = 0.54 ins. tf = tw

No. of stiffeners = 6

bs - bs ts

tww

B. Integrally Stiffened Plate

b = 2.05 ins. t = 0.089 ins.
s s

b = 1.06 ins. t = 0.058 ins.w w

No. of stiffeners = 6

Material Properties:

Aluminum Alloy

E = E22 = 9.5 x 106 psi

G12 = G23 =3.655 x 106 psi

12 = 0.3

FIGURE 5.8. T-Section and Integrally Stiffened Plates - Data

(Test Problem 4)
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Results from Program ks fromPlate Length ks from
No. (ins.) Critical Stress k Axial half-wave Appendix B

k* Appendix B
0r psi s No. m

A 15.0 25800 4.25 5 4.30

B 12.3 29950 1.86 6 1.87

2

*cr - 2
12(1 - v 12 )

Plate A - Buckling mode shape - "local buckling"

I . . I I' I . .

Plate B - Buckling mode shape - "local buckling"

FIGURE 5.9. T-Section and Integrally Stiffened Plates -

"Local Buckling" Results
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Results from Referehce
Results from Program 5 of Appendix B5 of Appendix B

Plate Number Length
(see Fig. 5.8) (ins.) Critical Axial half- Critical Axial half-

Load wave no. Load wave no.
P (Ibs.) m P (lbs.) m

B 25.0 22432 1 23450 1

(Stiffeners idealized
as beam elements)

B 25.0 29470 -

(Stiffeners idealized
as flat plate element,

-- -------------------- ------ -- -- -

'T-- ----------------------------------

I I I I i 1

Stiffeners idealized as beam elements

(NOTE: Beam element displacements omitted for clarity)

I I II I

Stiffeners idealized as plate elements

FIGURE 5.10. Integrally Stiffened Plates - "General Instability" Results

(Test Problem 4)
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(NOTE: All dimensions in inches.)

Aluminum alloy 7 cells

f a = 8.96 t .036

r t bfl = 2.56 tf =.048
Test Problem 5 bfl -1 4  b =1.06

bf 1  bf2 = 106
fl b f2

b = 1.06
C

Aluminum alloy 6 stiffeners

2.4- 2.4 f a bw  bf tw=tf
Test Problem 6A 6A 14.4 1.92 .576 .04

t P l b :0:: 48Test Problem 68 t w " 6B 14.4 0.96 .288 .04

Test Problem 6C t - bf 6C 16.0 1.50 .500 .048

a = Axial Length

Material Properties:

Ell = E22 = 10.0 x 106 psi G12 = 3.85 x 106 psi V12 = 0.3

FIGURE 5.11. Additional Test Problems - Data



(NOTE: All dimensions in inches.)

Aluminum alloy 6 stiffeners

bs bs b a = 16.0

Test Problem 7 t w  b bs = 1.876 t = .080

b = 1.436 t tf = .048
w wf

bf = 0.500

Aluminum alloy 5 stiffeners

bs bs bw a = 20.0

i tb = 1.5 t =.08
Test Problem 8 s s

w ts b = 1.436 t =t = t = .048
w - fl w w fl f2

bf2 tf2 b = 0.5

bf2 = 1.2

a = Axial. length

Material Properties:

Ell = E22 = 10.0 x 106 psi G12 3.85 x 106 12 = 0 . 3

FIGURE 5.11. Additional Test Problems - continued



TABLE 5.4

Additional Test Problems - Results

Results from Program Results from Literature

Plate No. Buckling Stress Axial half-wave Buckling Stress Axial half-wave Remarks

ao psi no. m ar psi no. m
cr cr

Test Problem 5 19550 5 20400 5

Test Problem 6A 21300 9 21400 -

Test Problem 6B 41600 6 42000

Test Problem 6C 41900 7 41200

Test Problem 7 49800 12 40900 7

Test Problem 8 52500 17 47700 10

[> Engineering Sciences Data 02.01.35 to 02.01 .37,. Engineering Sciences Data Unit, Royal Aeronautical
Society, London.

f Becker, Herbert: Handbook of Structural Stability, Part II, TN 3782, NACA, July, 1957, Figure 14.

'0



/_____ ..... .... --. ..... ...

II I I

FIGURE 5.12. BucklIng Mode Shapes for Test Prob~is 5, 6, and 8
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5.2 Functional Test of Program

The program logic is tested by running various data sets such that all major logical
paths are tested. The testing is divided into three categories:

(a) Functional Tests
(b) Inspection
(c) Engineering Tests (as shown in Section 5.1)

For the purpose of checking the logic of the main program DATAPRO and the routine
MACON, several runs are made where the various input options as described in the
data Input specifications are tested. Specific checkout for subroutine BLKDET, CDTM,
ZARK, BLU, and FBSUB is given in the Program Description Document under their re-
spective subroutine descriFttions.

For subroutines where the logic is considered trivial, checking is done by inspection.
For subroutines DB and DBGENS the program has also been checked through inspection
of the intermediate results that are optionally printed out.

Engineering tests shown in the previous two sections serve the purpose of functional
tests for all subroutines and the three main programs, as the data included there covers
the remaining logical design of the program. The degree to which this data is shown
to give correct results is also indicative of. the correctness of the program logic.

The test procedures for the various routines are given in Table 5.7.

The items that are tested in the various data sets are shown in Tables 5.5 and 5.6.

Data for engineering tests is given in Section 5.1. The data for the functional tests Is

available upon request.

Page 5.21



TABLE 5.5 Engineering Test Data as Functional Tests

Data Set
Item Name 1 Comment

No. 1 No. 2 No. 3 No. 4

JPC(1) = 20 Corrugated core Test 5sandwich

Truss coreJPC(1) = 30 Truss core Test 2A Test 2Bsandwich

JPC(1) = 50 Integral Panel Test 4B

JPC(1) 60 Integral Panel with Test 4A
Tee-stiffeners

Zee StiffenerJPC(1) = 70 Panel Test 7 Test 6A Test 6B Test 6CPanel

JPC(1) = 80 Hat Stiffener Panel Test 8

JPC(4) = 1 Read in type matri
JforPC(4) 1 R ead i n type matri Test 1 Test 3A Test 3B Test 3Cfor buck. element

JPC(4) = 0 Typ matrix et up Test 5 Test 2A Test 4B Test 4A
by program

JPC(3) = 0 Load only ALL CASES

JPC(3) = 1 Eigenvector TESTS 1 to

IBCOT = 1 Simply Supported Test 3A Test 3BEdge

Beam Element
IBCOT = -XX am Element Test 3C Test 3D Test 3E Test 3F

Location

1 See Section 4.7 for Data Input Specs
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TABLE 5.6 Functional Tests

Data Set
Item Name 1 Comment No. 1 No. 2 No. 3 No. 4

Honeycomb Core 11E 11F
JPC(1) = 40 SandwichE F

JPC(1) = 10 Corrugated Plate CORP1

Hat Stiffeners with
JPC(1.) = 81 location reinforce. 11C 11D

Angle stiffeners wit 1lAX
Joc. reinforce. I

Angle stiffeners wit 11A lB
JPC() = 91 Ioc. reinforce. II

JPC(1) = 100 Plate OPL3 IPL3

JPC(2) = 1 No. of diagonal OPLX (Partially checked out)
partitions

JPC(2) = 2 " OPLX2 (Partially checked out)

JPC(2) = 3 or " OPLX3 OPL3 IPL3
more

I nte rmedi ate
IPC(1) = 1 Intermediate QPLY3

Results

IPC(2) =1 " QPLY3

IPC(16) =1 Interrupt after data QPLY
preprocessi ng

CO = 0 Read engineering QPLY1
constants

CO = 1 Read fiber and
matrix properties

CO = 2 Contiguity QPLY2factors

CO = 3 Read Q-matrix QPLY4

1 See Section 4.7 for Data Input Specs
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TABLE 5.6 - continued

Data Set
Item Name Comment No. 1 No.2 No.3 No.4

General Beam
CO2 = 0 CL3CElement

C02 = 1 Rect. Beam Elemen
Lami nated

Rect. Beam Element
C02 = 1 turned 900 CL3A

Circular Beam
Element Laminated

MOPT = 0 Program sets range QPLY2
of modes

User sets lower
mode limit

MOPT = 3 Alternate loop on ZEEPI (Partially checked out
modes

User sets range of QPLY1
MOPT = 2 modesQPLYImodes
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TABLE 5.7

Functional Test Procedures for Program Subroutines

Subroutine or Purpose Tests
Program Name

Main Program Engineering and functional test data,
BUCLASP Driver inspection

Main Program Engineering and functional tests, inspection of
DATAPRO Data Preprocessor out formats

MACON Material Constants Logic trivial, functional test data, inspection

LOADING Main Program Ehgineering and functional tests
Load Solution

Buckling Engineering test data, inspection of coding,
DB Determinant inspection of intermediate results

Equilibrium Logic trivial, engineering tests, inspection of
DT Equations coding

Coefficients for Logic trivial, engineering tests, inspection of
RGEN Equilibrium coding

Equations

Generates ElementsGeDBGENS of Buckling Logic trivial, engineering tests, inspection of
DBGENS of Bucklng coding, inspection of intermediate results
Determinant

BLKDET, ELIM Real Determinant See Section 3.6, Program Description Document
MATZ, TRANSI

CDTM Complex See Section 3.7, Program Description Document
Determi nant
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TABLE 5.7 - continued

Functional Test Procedures for Program Subroutines

Subroutine or
Program Name Purpose Tests

Program Name

ZARK Complex RootZARK CompFinder See Section 3.8, Program Description Document.

DETZER Interpolation See Section 3.9, Program Description Document.

Main ProgramSPACMain Program Engineering and functional tests, temporary
DIS PLAC Eigenvectors and intermediate printDisplacement i ntermediate printDisplacement

Find bandwidthBANDW of buckling Engineering and functional tests inspection,

determinant temporary print

Transfer buckling Engineering and function tests, print of determinantCOMPAC determinant to value after BLU routinecompact form

Transfer one row
TURN to compact Temporary intermediate print, inspection

form

EIGV Eigenvector Engineering and functional tests, convergence
Solution checks

BLU Decomposition See Section 3.14, Program Description Document.

Forward/Backward
FBSUB Substitutiaon See Section 3.15, Program Description Document

DIS Relative Engineering and functional tests, inspection of
Displacements consistant displacements.
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6.0 SAMPLE PROBLEM

6.1 Input for Sample Problem

TEST PANEL TYPE NO 5 INTEGRAL PANEL 5 STIFFENERS

SO 5 1

5 8 2

7 0 8 12.3 2000. 50. 5.

0.0 -2.05

0.0 0.0

1.055 0.0

0.0 2.05
1.055 2.05

0.0 4.10
1.055 4.10

0.0 6.15
1 2 1
2 3 1
2 4 1
4 5 1
4 6 1
6 7 1
6 8 1

2
1 1
8 1I

.089 9.5+6 .3 3.655+6

.058 9.5+6 .3 3,655+6

.089 9.5+6 .3 3.655+6

.058 9.5+6 .3 3.655+6

.089 9.5+6 .3 3.655+6

.058 9.5+6 .3 3.655+6

.089 9.5+6 .3 3.655+6

Pae 6.1



6.2 Output for Sample Problem

PROGRAM SO325A/DUCLASP CCRTIFIE:D 11/2z/0 NOV 23 70

BUCKLING LOADS OF ORTHOTROPI.C LAMINATED STIFFZNED PLATES

LOADING -- UNIAXIAL COMPRESSION
BOUNDARY CONDITIONS -- LOADED EDGES ARE SIMPLY SUPPORTED, UNLOADEC SIDES
ARE FREE, SIMPLY SUPP., CLAMPED, OR SUPPORTED BY DEAN ELEMENT
BEAM ELEMENT HAS SIMPLY SUPP. ENDS AT ITS NEUTRAL AXIS

TEST PANEL TYPE NO 5 INTEGRAL PANEL 5 STIFFENERS

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

50 S 1 -0

SECTION TYPE 50

NMI = 5
NMA = 8
MOPT= 2

NUMBER OF ELEMENTS LL = 7
NUMBER OF BEAM EL. LB = 0
NUMBER OF NODES NOD = 8

LENGTH AL = 12.300

STARTING LOAD STLD = 2000.000
PRIMARY INTERVAL SINC = 50.000
SEQ. INTERVAL SINC2= 5.000

NODAL COORDINATES

NODE Z V
1 0.0000 -2.0500
2 0.0000 0.0000
3 1.0550 0.0000
4 0.0000 2.0500
5 1.0550 2.0500
6 0.0000O 4.1000
7 1.0550 4.1000
* 0.0000 6.1500

ELEMENT DATA
ELENT NO NODE I NODE J

1 1 2 1
2 2 .3 1
3 2 4 1
4 4 S
S 4 i

BOUNDARY CONDI TIONS
NODE CODE
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I
a a
3 0
4 a
I 0
6 0

7 0
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ELEMENT NUNDER 1 FLAT PLATE

--------------

NUNDER OF LAYERS LA =

LAYER NO I INPUT OPTION NO 0 WAS USED

THE MATERIAL PROPERTIES WAS ENTERED AS E11,EZZ ETC.

THICKNESS Ti = .0890
E-nODULUS El = 9500000.0000

EZ = 950000.0000
POISSONS RATIO RNUA= .3000

RNUB= .3000
TORSIONAL MNO. G2 = 3655000.0000

LAYER EXX EYY MUXY NUYX

1 9.500000E+06 9.500GGGE+C6 3. OC GOrE-01 3. OCGGGE-G1 3.655GG0E+06

Pa 6



4-MATRIX LAYER NO 1

10439560.440 3131868.132 0.000
3131868.132 10439560.440 0.000

0.000 0.000 3655000.000

LOCATION OF NEUTRAL PLANE
RELATIVE TO REFERENCE PLANE .0445

A-MATRIX

929120.879 278736.264 0.000
278736.264 929120.879 0.000

0.000 0.000 325295.000

8-MATRIX

.000 .000 0.000

.000 .000 0.000
0.000 0.000 .000

D-MATRIX

613.297 183.989 0.000
183.989 613.297 0.000

0.000 0.000 214.722
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CLCENCT NUICER 2 FLAT PLATE

NUMBER. O LAYERS LA =

LAYER NO 1 INPUT OPTION NO 0 WAS USED

THE MATERIAL PROPERTIES WAS ENTERED AS E11,E22 ETC.

THICKNESS TI = .0580
E-MOCULUS El = 9500000.0000

E2 = 9500000.0000

POISSONS RATIO RNUA= .3000

RNUB= .3000

TORSIONAL .HOC. G12= 3655000.0000

LAYER EXX EYY MUXY MUYX G

I 9.500000E+06 9.500000E+06 3.000000E-01 3.000000E-01 3.655000E+06
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-MATRtX LAYER NO i

10439560.440 3131868.132 0.000
3131868.132 10439560.440 0.000

0.000 0.000 3655000.000

LOCATION OF NEUTRAL PLANE
RELATIVE TO REFERENCE PLANE .0290

A-nATRIX

605494.505 181648.352 0.000
181648.352 605494.505 0.000

0.000 0.000 211990.000

B-MATRIX

.000 .000 0.000

.000 .000 0.000
0.000 0.000 .000

D-MATRIX

169.740 50.922 0.000
50.922 169.740 0.000
0.000 o0.00 59.428

Page 6.7



ELEMENT NUNDER 3 FLAT PLATE

--------------

NUMBER OF LAYERS LA

LAYER NO I INPUT OPTION NO 0 WAS USED

THE MATERIAL PROPERTIES WAS ENTERED AS E11,E22 ETC.

THICKNESS Ti = .0890
E-NOCULUS El = 9500000.00I0

E2 = 9500000.0000
POISSONS RATIO RNUA= .3000

RNUD= .3000
TORSIONAL MOD. 012 = 3655000.0000

LAYER EXX EYY MUXY MUYX G

1 9.500000E+06 9.50GG00E+06 3. 0MOGGE-01 3.0000GGC E-0G 3.655000E+06
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0-MATRIX LAYER NO I

10439560.440 3131868.132 0.000

3131868.132 10439560.440 0.000

0.000 0.000 3655000.000

LOCATION OF NEUTRAL PLANE
RELATIVE TO REFERENCE PLANE .0445

A-MATRIX

929120.879 278736.264 0.000
278736.264 929120.879 0.000

0.000 0.000 325295.000

B-MATRIX

.000 .000 0.000

.000 .000 0.000
0.000 0.000 .000

D-MATRIX

613.297 183.989 0.000
183.989 613.297 0.000

0.000 0.000 214.722
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CLEMENT NUMSCR 4 FLAT PLATE

--------------

NUMBER OF LAYERS LA =

LAYER NO 1 INPUT OPTION NO 0 WAS USED

THE MATERIAL PROPERTIES WAS ENTERED AS E11.E22 ETC.

THICKtESS Ti = .0580
E-NODULUS El = 9500000.0000

E2 = 9500000.0000
POISSONS RATIO RNUA= .3000

RNUD= .3000
TORSIONAL MOX. G12 = 3655000.0000

LAYER EXX EYY MUXY HUYX G

1 9.500000E+06 9.500000E+06 3.GOOGOE-01 3.D0000E-01 3.655000E+06
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0-MATRIX LATER NO 1

10439560.440 3131868.132 0.000
3131868.132 10439560.440 0.000

0.000 0.000 3655000.000

LOCATION OF NEUTRAL PLANE
RELATIVE TO REFERENCE PLANE .0290

A-MATRIX

605494.505 181648.352 0.000
181648.352 605494.505 0.000

0.000 0.000 211990.000

H-MATRIX -

.000 .000 0.000

.000 .000 0.000
0.000 0.cc0 .000

D-MATRIX

169.740 50.922 0.000

50.922 169.740 0.000
0.000 0.000 59.428
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ELEMENT NUCER S FLAT PLATE

--------------

NUNBER OF LAYERS LA. =

LAYER NO I INPUT OPTION NO 0 WAS USED

THE MATERIAL PROPERTIES WAS ENTERED AS EII,E22 ETC.

THICKNESS Ti = .0890
E-MODULUS El = 9500000.0000

E2 = 9500000.0000

POISSONS RATIO RNUA= .3000
RNUB= .3000

TORSIONAL NOC. 12 = 3655000.0000

LAYER EXX EYY MUXY MUYX G

1 9.500000E+06 9.500000E+06 3.00000GE-01 3.000OGE-01 3.655000E+06
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Q-MATRIX LAYER NO 1

10439560.440 3131868.132 0.000
3131868.132 10439560.440 0.000

0.000 0.000 3655000.000

LOCATION OF NEUTRAL PLANE
RELATIVE TO REFERENCE PLANE .0445

A-MATRIX

929120.879 278736.264 0.000
278736.264 929120.879 0.000

0.000 0.000 325295.000

B-MATRIX

.000 .o00 0.000

.000 .000 0.000
0.000 0.000 .000

D-MATRIX

613.297 183.989 0.000
183.989 613.297 o.000

0.000 0.000 214.722
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ELEMCNT NUNDER 6 FLAT PLATE

--------------

NUNBER OF LAYERS LA = 1

LAYER NO I INPUT OPTION NO 0 WAS USED

THE MATERIAL PROPERTIES WAS ENTERED AS ElI,E22 ETC.

THICKNESS Ti = .0580
E-MOCULUS El = 9500000.0000

E2 = 9500000.0000
POISSONS RATIO RNUA= .3000

RNUB= .3000
TORSIONAL NOD. G12 = 655000.0000

LAYER EXX EYY MUXY HUYX G

I 9.5000000-06 9.500000E+06 3. o00lCC E-l1 3.0 GOOOGE-01 3.65501GGE+06
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6-MATRIX LAYER NO 1

10439560.440 3131868.132 0.000
3131868.132 10439560.440 0.000

0.000 0.000 3655000.000

LOCATION OF NEUTRAL PLANE
RELATIVE TO REFERENCE PLANE .0290

A-MATRIX

605494.505 181648.352 0.000
181648.352 605494.505 0.000

0.000 0.000 211990.000

B-KATRIX

.000 .000 0.000

.000 .000 0.000
0.000 0.000 .000

D-MATRIX

169.740 50.922 0.000
50.922 169.740 o0.00
o0.00 0.000 59.428
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ELCECNT NUMBER 7 FLAT PLATE

-------------

NUNDER OF LAYERS LA = 1

LAYER NO 1 INPUT OPTION NO 0 WAS USED

THE MATERIAL PROPERTIES WAS ENTERED AS EI1,E22 ETC.

THICKNESS Ti = .0890
E-NODULUS El = 9500000.0000

E2 = 9500000.0000
POISSONS RATIO RNUA= .3000

RNUB= .3000
TORSIONAL NOD. G12 = 3655000.0000

LATER EXX lEYY UXY NUYX

1 9.50G000E+G06 9.500000E+06 3.00000E-01 3.00 OGOE-01 3.655000E+06
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4-MATRIX LAYER NO 1

10439560.440 3131868.132 0.000

3131868.132 10439560.440 0.000
0.000 0.000 3655000.000

LOCATION OF NEUTRAL PLANE
RELATIVE TO REFERENCE PLANE .0445

A-MATRIX

929120.879 278736.264 0.000
278736.264 929120.879 0.000

0.000 0.000 325295.000

B-MATRIX

.000 .000 0.000

.000 .000 0.000
0.000 0.000 .000

D-MATRIX

613.297 183.989 0.000
183.989 613.297 0.000

0.000 0.000 214.722

SUMMARY OF TYPES OF PLATE ELEMENTS

ELDE. NO. TYPE NO.

i2
2 2
3 1
4 2
S 1
6 .2
V i

NUMER OF NON-STANDARD OFFSETS -0

ELEN. NO. WIDTH TRANSFORMATION EL. TYPE

SIN COS

1 2.05000 0.00000 1.00000 FLAT PLATE

2 1.05500 .00000 0.00000ow FLAT PLATE

3 2.05000 0.00000 1.00o00 FLAT PLATE

4 1.05500 1.00000 0.00000 FLAT PLATE

S 2.05000 0.00000 1.00000 FLAT PLATE

S1.05500 1.00000 0.00000 FLAT PLATE

T 8.05000 0.00000 1.00000 FLAT PLATE

MMT OFFSET
cLe. NO. START ZO START 10 END ZO END TO ZNm

Pe e . 17



1 .00000 0.000000 0 0.00000 .04450
2 .00000 0.00000 .00000 0.00000 .02900
3 .00000 0. 00000 .00000 0.00000 .04450
4 .doc00000 0.00000 .00000 0.00000 .02900
5 .00000 0.00000 .00000 0.00000 .04450
6 .00000 0.00000 .00000 0.00000 .02900
S.00000 o.od00000o .00000 0.00000 .04450

ITYPA-MATRIX

3 O 1
4 2 2
0 4 0

ITYP-14ATRI X

3 1 0
3 0 1
4 2 .2
0 4 0

ITYPB-MATRIX

3 1 0
3 0 1
4 2 2
0 4 0
o 0 13

ARRAY SPACE REUIRENTS FOR BUCKLING DET. BLOCKS ARE

DBMA-MATRZX(+SCRATCH SPACE) 672 DEC. \0000001240 OCT.

DBN -- ATRIX 384 DEC. 0000600 OCT.

DBMS-NATRRX 480 DEC. 0000740 OCT.

SCRATCH ARRAYr 64 DEC. W00000100 OCT.

TOTAL ARRAY SPACE(BLANK COMMC) 1600 DEC. 000003100 OCT.
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ASSUMING A PROGRAM LENGTH OF GOOSGOGG OCT.

(CXCLUDING BLA K COMMHN)

FOR LOAD CALCULATION THE

RECOMMENDED FIELD LENGTH IS - G0005310 OCT.

TIME FOR DATA INPUT ANID PREFROCESSING .414 CF-SEC.
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* MODE IS M= S *

* *

* *

N = 5

LOAD ON FIRST EL. TOTAL LOAD DB-VALUES COMMENTS

(PLI) (POUNDS) (BUC. DET)

2000.0000000000 31475.281 -7.45516E-01 712

2050.0000000000 32262.163 -8.71262E-01 712

2100.0000000000 33049.045 -9.85128E-01 712

2150.0000000000 33835.927 -6.72766E-02 716

2200.0000000000 34622.809 -7.09164E-02 716

2250.0000000000 35409.691 -7.19374E-02 716

2300.0000000000 36196.573 -6.99887E-02 716

2350.0000000000 36983.455 -6.50101E-02 716

2400.0000000000 37770.337 -9.16685E-01 712

2450.0000000000 38557.219 -7.59863E-01 712

2500.0000000000 39344.101 -5.85140E-01 712

2550.0000000000 40130.983 -4.10919E-01 712

2600.0000000000 40917.865 -2.55528E-01 712

Z650.0000000000 41704.747 -1.33600E-01 712

2700.0000000000 42491.629 -8.42791E-01 708

2750.0000000000 43278.511 -1.78043E-01 708

2800.0000002000 44065.393 3.54537E-01 SIGN CHANGE IN DD 704

2755.0000000000 43357.199 -1.40829E-01 708

2760.0000000000 43435.888 -1.08100E-01 708

2765.0000000000 43514.576 -7.96171E-02 708

2770.0000000000 43593.264 -8.82139E-01 704

z277.0000000000 43671.952 -5.50364E-01 704

2780 .0000000000 43750.640 -2.74440E-01 704

2785.0000000000 43829.329 -8.03204E-01 700

2790.0000000000 43908.017 1.26560E-01 SIGN CHANGE IN DB 704

2787.5000000000 43868.673 7.01617E-01 SIGN CHANGE IN DB 700

2786.3343848181 43850.329 3.69521E-01 696

2786.2947104498 43849.704 -1.80343E-01 692

2786.2958848077 43849.723 7.03582E-01 680

2786.2958569576 43849.722 -6.57445E-02 688

ELEMNT LOADS MOVE N 5

CLEM. LINE LOAD TOTAL ELEMENT ELEMENT

NO. (PLATE EL. ONLY) LOAD TYPE

1 2786.2959 LBS/INCH 5711.9066 LBS FLAT PLATE

2 1815.7883 LBS/INCH 1915.6567 LBS FLAT PLATE

3 2786.2959 LBS/INCH 5711.9066 LBS FLAT PLATE

4 1815.7883 LBS/INCH 1915.6567 LBS FLAT PLATE

S 2786.2959 LBS/INCH 5711.9066 LBS FLAT PLATE

S 1815.7883 LBS/INCH 1915.6567 LBS FLAT PLATE

7 2786.2959 LBS/INCH 5711.9066 LBS FLAT PLATE

AXIAL STRAIN 1S 3.29544-03

CRITICAL LOAD
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LINE LOAD ON CL. ONE 2786.296 P.L.I.

TOTAL LOAD = 43849.723 POUNDS

MO DEM = 5

TEST PANEL TYPE NO S INTEGRAL PANEL 5 STIFFENERS

TIMING

FOR HODE 4 = 5

EXECUTION TInE IS 11.180 CP-SECO3DS
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TEST PANEL TYPE NO 5 INTEGRAL PANEL 5 STIFFENERS

TIMING

FOR MNOE E = 6
EXECUTION TIME IS 9.320 CP-SECONDS
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* MO IS N= 7 *

LOAD ON FIRST EL. TOTAL LOAD DB-VALUES COMMENTS
(PLY) (POUNDS) (BUC. DET)

2000. CoGCGGCG 31475.281 -9. 74882E-02 772
2050. C000oGGOGo 32262.163 -6.71851E-02 776
2100.0 GCGGGC0 33049.045 -2.32494E-il 776
2150.CGGCGGGGG 33835.927 -5. 10982Z-01 776
2200.000CCC0000 34622.809 -8.63243E-01 776

2250.0COCocGGI0G 35409.691 -7.55946E-02 780
2300. GOGGC GGC 36196.573 -9.08531E-02 780

2350.GCG0C000O 36983.455 -9.48193E-02 780
2400.0000000000 37770.337 -8.57188E-02 780
2450.0000000000 38557.219 -6.59859E-02 780

2500.00GGC00000000 39344.101 -6.66689E-01 776

2550.0000000000 40130.983 -3.20654E-01 776
2600.0000000000 40917.865 -1.00021E-01 776
2650.0000000000 41704.747 -2.04431E-01 772
2700.0000000000 42491.269 3.96171E-01 SIGN CHANGE IN DB 764
2635.0000000000 41783.435 -1.50724E-01 772
2660.0000000000 41862.124 -1.07651E-01 772
2665.0000000000 41940.812 -7.39055E-02 772
2670.0000000000 42019.500 -7.71296E-01 768
2675 .0=1000=00 42098.188 -4.69011E-01 768
2680. 000000000 42176.876 -2. 56724E-01 768

2685.0000000000 42255.565 -1 .16702E-01 768
2690.0000000000 42334.253 -5.21895E-01 764

2695.WrWrnan0 42412.941 1.63765E-01 SIGN CHANGE IN DB 764

2692.5000000000 42373.597 -1.10215E-01 764
2695.0000000000 42412.941 1.63765E-01 SIGN CHANGE IN DB 764
2693.5056828346 42389.424 2.41819E-01 760
2693.3844048098 42387.515 2.87978E-G1 756

2693.3746521913 42387.362 -8.58556E-01 748

2693.3747644608 42387.364 1.86780E-01 740
2693.3747375357 42387.363 -2.05347E-01 748

ELEENT LOADS .NOCE N 7

LEN. LINE LOAD TOTAL ELEMENT ELEMENT

o. CPLATE EL. ONLY) LOAD TYPE

s 2693.3748 LBS/INCH 5521.4183 LBS FLAT PLATE

2 1755.2330 LBS/IMCH 1851.7708 LBS FLAT PLATE

3 2693.3748 LBS/INCH 5521.4183 LBS FLAT PLATE

4 1755.330 LBS/INCH 1851.7708 LBS FLAT PLATE

S. 2693.3748 LBS/INCH 5521.4183 LBS FLAT PLATE

6 1755.2330 LBS/INCH 1851.7708 LBS FLAT PLATE

7 2693.3748 LBS/INCH 5521.4183 LBS FLAT PLATE

AXIAL STRAIN IS 3.18554E-03
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ICAL LOAD

LINE LOAD ON EL. ONE = 2693.375 P.L.I.
TOTAL LOAD = 42387.364 POUNCS
NODE = 7

TEST PANEL TYPE NO 5 INTEGRAL PANEL 5 STIFFENERS

TIMING

FOR NMDE M = 7
EXECUTION TIME IS 11.602 CP-SECONDS

P A')5



* NODE IS = 8 *

* *

* *

SPOTCHECK 1 LOADING 2475.00 LBS/IN BUCKL.DET. -.207*2** 812

SPOTCHECK 2 LOADING 2525.000 LBS/IN, BUCKL.DET. -.140*2*4 808

LOAD ON FIRST EL. TOTAL LOAD DB-VALLES COMMENTS

(PLI) (POUNDS) (BUC. DET)

2000.0000000000 31475.281 -7. 14225E-02 824

2050.0000000000 32262.163 -8.77078E-01 820

2100.0000000000 33049.045 -6.31925E-01 820

2150.0000000000 33835.927 -4.23739E-01 820

2200.000000C000 34622.809 -2.61295E-01 820

2250.0000000000 35409.691 -1.45655E-01 820

2300.0000000000 36196.573 -7.15480E-02 820

2350.0000000000 36983.455 -4.75860E-01 816

2400.0000000000 37770.337 -1.55954E-01 816

2450.0000000000 38557.219 -5.57870E-01 812

2500.0000000000 39344.101 -9.13671E-01 808

2550.0000000000 40130.983 -6.87441E-01 800

2600.0000000000 40917.865 -2.570202-01 DBLE ROOT ENCOUNTERD 800

2555.0000000000 40209.671 -9.45150E-02 800

2560.0000000000 40288.360 -4.29496E-01 788

2565.0000000000 40367.048 -1.60648E-01 DBLE ROOT ENCOUNTERD 792

2562.500000000 40327.704 -2.15984E-01 DCLE ROOT ENCOUNTERD 788

2561.2500000000 40308.032 -1.44037E-01 DELE ROOT ENCOUNTERD 784

2560.6250000000 40298.196 -7.13585E-02 DDLE ROOT FOUND 772

THE DOUBLE ROOT IN THE P-VALUES ARE IN THE FOLLOWING INTERVAL

WHICH WILL BE IGNORED IN THE SEARCH FOR THE CRITICAL LOAD

NXU = 2560.625

NXL = 2560.000

SPOTCHECK 1 LOADING 2563.125 LBS/IN BUCKL.DET. -. 5014 ** 788

SPOTCHECK 2 LOADING 2568.125 LBS/IN BUCKL.DET. -. 7664*2 792

SPOTCHECK 1 LOADING 2780.625 LBS/IN BUCKL.DET. -.584*2*4 796

SPOTCHECK 2 LOADING 2830.625 LBS/IN BUCKL.DET. -.503*2* 788

LOAD ON FIRST EL. TOTAL LOAD DB-VALUES COMMENTS

(PLI) (POUNDS) (BUC. DET)

2560.6250000000 40298.196 -7.13585E-02 772

2565.6250000000 40376.884 -2.36980E-01 792

2570.6250000000 40455.572 -1.09015E-01 796

2575.6250000000 40534.260 -3.40042E-01 796

2580.6250000000 40612.948 -7.44653E-01 796

2585.6250000000 40691.637 -8.38589E-02 800

2590.6250000000 40770.325 -1.33439E-01 800

2595.6250000000 40849.013 -1.94723E-01 800

2600.6250000000 40927.701 -2.66515E-01 800

2605.6250000000 41006.389 -3.47123E-01 800

265.6250000000 41793.271 -7.13216E-02 804

2705.6250000000 42580.153 -9.16060E-01 800

2755.6250000000 43367,035 -2.01035E-01 800

205. 6250000000 44153.917 -. 76307E-01 78

85$.628S0000000 44940.800 -7.71566e-01 WAS SIGN CH. MISSED 78

o.30.6250000000 44547.358 -s.ozssg -01 SPOTCHECK f s8
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SUDDIVI:C FacVIOUS STCPS TO CHECK FOR T O MORE ZERO-CROSSINGS

NEU = 2855.625
STLDI = 2805.625

LOAD ON FIRST EL. TOTAL LOAD DB-VALUES COMMENTS
(PLI) (POUNDS) (BUC. DET)

2805.6250000000 44153.917 -7. 76307E-01 788
2810.6250000000 44232.606 6.89601E-02 SIGN CHANGE IN DB 792
2806.1250000000 44161.786 -4.15144E-01 788
2806.6250000000 44169.655 -9.95473E-02 788
2807.1250000000 44177.524 1.73246E-01 SIGN CHANGE IN DB 788
2806.8074594451 44172.527 7. 70601E-02 784
2806.7990391544 44172.394 5.06035E-01 776
2806.7988174760 44172.391 -1 .68094E-01 768
2806.7988455423 44172.391 6.34965E-02 776

ELEMENT LOADS MOCE M 8

CLEn. LINE LOAD TOTAL ELEMENT ELENNT
NO. (PLATE EL. ONLY) LOAD TYPE

1 2806.7988 LBS/INCH 5753.9376 LBS. FLAT PLATE
2 1829.1498 LBS/INCH 1929.7530 LBS FLAT PLATE
3 2806.7988 LBS/INCH 5753.9376 LBS FLAT PLATE
4 1829.1498 LBS/INCH 1929.7530 LBS FLAT PLATE
5 2806.7988 LBS/INCH 5753.9376 LBS FLAT PLATE
6 1829.1498 LBS/INCH 1929.7530 LBS FLAT PLATE
7 2806.7988 LBS/INCH 5753.9376 LBS FLAT PLATE

AXIAL STRAIN IS 3.31969E-03

CRITICAL LOAD

LINE LOAD ON EL. ONE = 2806.799 P.L.I.
TOTAL LOAD = 44172.391 POUNDS
MODE N 8

TEST PANEL TYPE NO 5 INTEGRAL PANEL 5 STIFFENERS

TINING

EXECUTION TINE IS 18.630 CP-SECONDS
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PROGRAM S0325A/DUCLASP CERTIFIED 11/20/70 NOV 23 70

BUCKLING LOADS OF ORTHOTROPIC LAMINATED STIFFENED PLATES

LOADING -- UNIAXIAL COMPRESSION

BOUNDARY CONDITIONS -- LOADEC EDGES ARE SIMPLY SUPPORTED, UNLOADED SIDES
ARE FREE, SIMPLY SUPP., CLAMPEC, OR SUPPORTED BY BEAN ELEMENT
BEAN ELEMENT HAS SIMPLY SUPP. ENCS AT ITS NEUTRAL AXIS

TEST PANEL TYPE WO 5 INTEGRAL PANEL 5 STIFFENERS

LOAD N
43849.723 5
42028.130 6
42387.364 7
44172.391 8

ELEMENT LOADS MODE N 6

ELEM. LINE LOAD TOTAL ELEMENT ELEMENT
NO. (PLATE EL. ONLY) LOAD TYPE

1 2670.5484 LBS/INCH 5474.6242 LBS FLAT PLATE
2 1740.3574 LBS/INCH 1836.0770 LBS FLAT PLATE
3 2670.5484 LBS/INCH 5474.6242 LBS FLAT PLATE
4: 1740.3574 LBS/INCH 1836.0770 LBS FLAT PLATE
S 2670.5484 LBS/INCH 5474.6242 LBS FLAT PLATE
6 1740.3574 LBS/INCH 1836.0770 LBS FLAT PLATE
7 2670.5484 LBS/INCH 5474.6242 LBS FLAT PLATE

AXIAL STRAIN IS 3.15854E-03

FINAL RESULTS (LBS)

CRITICAL LOAD = 42028.130

NOCE = 6

GENERATE BUCKLING DETERMINANT FOR EIGENVECTOR SOLUTION
FOR A CRITICAL LOAD 2670.548
AND A CRITICAL NOE 6

DEX IDX 5.26381E-01 780
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TEST PANEL TYPE N3 5 INTEGRAL PANEL 5 STIFFENERS

TIMING

TOTAL EXECUTION TIME IS 51.428 CP-SECONDS

TIMING BREAKDOwi BY SUBROUTINES (IN CP-SECONDS)

ROUTINE TOTAL TIME NO. OF CALLS AVERAGE PER CALL

DB 50.186 135 .371748

DT 0.000 3358 0.000000

RGE 0.000 10378 0.000000

DBGENS 0.000 21060 0.000000

ZARK 1.606 282 .005695

DET 23.482 135 .173941

CDTN 0.000 178 0.000000
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PROGRAM SO325A/ZUCLASP CERTIFIED 11/20/7C NOV 25 70

BUCKLING LOADS OF ORTHOTEOPIC LAMINATED STIFFENED PLATES

LOADING --- UNAXIAL COMPRESSION

BOUNDARY CONDITIONS -- LOADED EDGES ARE SIMPLY SUPPORTED, UNLOADED SIDES

ARE FREE, SIMPLY SUPP., CLAMPED, OR SUPPORTED BY BEAN ELEMENT

BEAM ELEMENT HAS SIMPLY SUPP. ENDS AT ITS NEUTRAL AXIS

TEST PANEL TYPE NO 5 INTEGRAL PANEL 5 STIFFENERS

* EIGENVECTOR *

* AND 

* RELATIVE DISPLACEMENTS *

BANDWIDTHS

START BLOCK ---

LOCER BANDWIDTH 13

UPPER BANDWIDTH 13

REPETITIVE BLOCK ---

LOlER BANDWIDTH 13

UPPER BANDWIDTH 13

END BLOCK ---

LOWER BANDWIDTH 13

UPPER BANDWIDTH 13

TOTAL BUCKLING DETERMINANT BANDWIDTH IS.---

LO4ER BANDWIDTH 13

UPPER BANDWIDTH 13

TOTAL ARRAY SPACE REQ. FOR EIGENVECTOR 3696

START BLOCK" --- NUMBER OF ROWS IDAY = 20

-- NUMBER OF COLUMNS IDAX = 24

RPETITIVE BLOCK --- NUMBER OF ROWS IHDY = 16

---NUBER OF COLUMNS IDMX = 24

DID BLOCK ---NUMBER OF ROWS IDBY = 20

--- NUMBER OF COLUMNS IDBX = 24

BANDWIDTH IDTH = 27

TOTAL NUBER O ROWS NORD = 88

TOTAL NUCBER OF DIAGONAL BLOCKS IN DET. NBB =

CORE REQUIREMENTS
-----------------

START BLOCK ARRAY SPACE 0000001510 OCT 840 DEC

REPETITIVE BLOCK ARRAY SPACC 0000001240 OCT 672 DEC
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END BLOCK ARRA" SPACE 0000001510 OCT 840 DEC

FOR NORE OR LESS STIFFENERS ADJUST FIELD LENGTH ACCORDINGLY

MAX. NO. OF BLOCKS WITH 70K FIELDLENGTH RESTRICTION IS 24

ASSUMING AN OVERLAY LENGTH OF 0GOC0j27000 OCT.

(EXCLUDING BLANK COHrMN)

REQUIRED FIELD LENGTH IS 0000036160 OCT.

FOR EIGENVECTOR SOLUTION
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CCTCRMINArIT FRO,4 DLKDET --- DCT =EX'(Z4*IX)

DX IDX S.26381E-01 780

DETERMINANT rFROH ECOMPOSED MATRIX

DEX IDX s.263Z9E-01 780

Page 6.32



CIGENVECTOR

ITERATION NUHDER 1

NORMALIZING FACTOR 1.6002842E+07

VECTOR

-6.8501343E-02 1.4626479E-02 4.9550348E-02 -1.1701264E-04

-1.1777752E-04 -7.3527369E-03 1.9384886E-05 3.1699739E-04

2.3736243E-01 1.3983271E-01 -6.1132075E-01 1.3663306E-01

-3.3448624E-05 1.8486690E-02 -1.5521548E-04 -1.9342617E-02

1.2758658E-01 -1.8444097E-02 -3.441027E-02 -7.9799751C-03

1.8972112E-04 1.0079153E-02 1.614995CE-04 5.8062544E-03

-3.4848231E-01 -2.0529798E-01 8.9751909E-01 -2.0057619E-01

1.8506581E-05 -1.0128612E-02 8.8398017E-05 1.0470687E-02

-1.6046313E-01 1.8490529E-02 1.2314665E-02 1.4746984E-02

-2.2309042E-04 -1 .0712161E-02 -2.1022647E-04 -9.1447904E-03

3.8827313E-01 2.2873936E-01 -1. OGCCGGE+00 2.2347981E-01

1.0794071E-10 -1 .8092717E-07 -2.5622249E-09 3.4353167E-07

1.6046316E-01 -1.4746994E-02 1.2314613E-02 -1.8490522E-02

2.1023180E-04 9.1450565E-03 2.2309585E-04 1.0712423E-02

-3.4848248E-01 -2.0529807E-01 8.9751952E-01 -2.0057628E-01

-1.8506281E-05 1.0128201E-02 -8.8402827E-05 -1 .0469944E-02

-1.2758669E-01 7.9799941E-03 -3.4410225E-02 1.8444103E-02

-1.6149621E-04 -5.8060448E-03 -1.8971582E-04 -1 .0078695E-02

2.3736276E-01 1.3983291E-O1 -6.1132161E-01 1.3663326E-01

3.3448911E-05 -1.8487125E-02 1.5520981E-04 1.9343424E-02

6.8501450E-02 1.1701546E-04 4.9550367E-02 -1.4626493E-02

-1.9385921E-05 -3.1759842E-04 1.1778319E-04 7.3530030E-03

EIGENVECTOR

ITERATION NUNDER 2

NORMALIZING FACTOR 1.6107661E+08

VECTOR

-6.8501391E-02 1.4626483E-02 4.9550354E-02 -1 .1701403E-04

-1. 1777999E-04 -7.3527221E-03 1.9385100E-05 3.1729007E-04

2.3736250E-01 1.3983275E-01 -6.1132093E-01 1.3663309E-01

-3.3448799E-05 1.8486934E-02 -1. 5521257E-04 -1.9343059E-02

I.2758667E-01 -1.8444115E-02 -3.4410307E-02 -7.9799765E-03

S.8971921-04 1.0079201E-02 1.6149755E-04 5.8059929E-03

-3.4848266E-01 -2.0529818E-01 8.9752000E-01 -2.0057640E-01

1.8506449E-05 -1.0128422E-02 8.8400361E-05 1.0470339E-02

-1.6046320E-01 1.8490524E-02 1.2314609E-02 1.4747003E-02

-2.2309292E-04 -1.0712153E-02 -2.1022950E-04 -9.1450760E-03

3.8827313E-01 2.2873936E-01 -1 .000000oE+00 2.2347980E-01

-8.1199655E-12 1.1598600E-08 1.4190592-10 -2.1178052E-08

1.6046320E-01 -1.4747003E-02 1.2314608E-02 -1.8490524E-02

2.1022986E-04. 9.1450994E-03 2.2309253C-04 1.0712127E-02

-3 .44867E-01 -2.0529819E-01 8.9752001E-01 -2.0057640E-01

-1.8506434E-05 1.0128402E-02 -8.8400617E-05 -1.0470301E-02

-1 .758667E-01 7.97997685-03 -3.4410307E-02 1.8444115E-02

-1.6149783E-04 -5.8060095C-03 -1 .8971886E-04 -1.0079178E-02

2.3736250E-01 1.3983276E-01 -6.1132095E-01 1.3663310E-01

3.3448791-05 -1.8486921E-02 1.5521274E-04 1.9343035E-02

6.8501393E-02 1.1701402E-04 4.9550355E-02 -1.4626483E-02

-1.9385061-O05 -3.1729087E-04 1.1777977E-04 7.3527068E-03

EISNVCOR
-----------

IT ERAION NUMBER 3
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NORWALIZING FACTOR 1.SI07666408

VECTOR

-6.8501391E-02 1.4626483E-02 4.9550354E-02 -1.1701403E-04

-1.1777999E-04 -7.3527221E-03 1.9385100E-05 3.1729007E-04

2.3736250E-01 1.3983275E-01 -6.1132093E-01 1.3663309E-01

-3.3448799E-05 1.8486934E-02 -1.5521257E-04 -1.9343059E-02

1.275866E7-01 -1.8444115.-0Z. -3.4410307E-02 -7.9799765E-03

1.8971920E-04 1.0079201E-02 1.6149755E-04 5.8059929E-03

-3.4848266E-01 -2.0529818E-01 8.9752000E-01 -2.0057640E-01

1.8506449E-05 -1.0128422E-02 8.8400361E-05 1.0470339E-02

-1.6046320E-01 1.8490524E-02 1.2314609E-02 1.4747003E-02

-2.2309292E-04 -1.0712153E-02 -2.1022950E-04 -9.1450760E-03

3.8827313E-01 2.2873936E-01 -1.00000OE+00 2.2347980E-01

-8.1199747E-12 1.1598614E-08 1.419G609E-10 -2.1178077E-08

1.6046320-01 -1.4747003E-02 1.2314608E-02 -1.8490524E-02

2.1022966E-04 9.1450994E-03 2.2309253E-04 1.0712127E-02

-3.4848267E-01 -2.0529819E-01 8.9752i01E-il -2.0057640E-01

-1.8506434E-05 1.01284GE-02 -8.8400617E-05 -1.0470301E-02

-1.2758667E-01 7.9799768E-03 -3.4410307E-2 1.8444115E-02

-1.6149783E-04 -5.8063095E-03 -1.8971886E-04 -1.0079178E-02

2.3736250E-0 1.3983276E-01 -6.1132095E-01 1.3663310E-01

3.3448791E-05 -1.8486921E-02 1.5521274E-04 1.9343035E-02

6.8501393E-2 1.1701402E-04 4.9550355E-02 -1.4626483E-02

-1. 9385061C-05 -3.1729087E-04 1.1777977E-04 7.3527068E-03
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PROGRAM SO325A/DUCLASP CERTIFIED 111/20/' NOV 23 ?0

BUCKLING LOADS OF ORTHOTROPIC LAMINATED STIFFENED PLATES

LOADING .-- UNAXIAL COMPRESSION

BOUNDARY CONDITIONS -- LOADED EDGES ARE SIMPLY SUPPORTED, UNLOADED SIDES

ARE FREE, SIMPLY SUPP., CLAMPED, OR SUPPORTED BY BEAM ELEMENT

BEAM ELEMENT HAS SIMPLY SUPP. ENDS AT ITS NEUTRAL AXIS

TEST PANEL TYPE NO 5 INTEGRAL PANEL 5 STIFFENERS

* *

* RELATIVE DISPLACEMENTS *

P-VALUES --- ROOTS OF EQUILIBRION EQUATIONS---

ELEMENT TYPE NO. 1

PTT ' -- REAL -- IMAGINARY PlY

-1.30176513235563E+01 0. 5

8.5033567113G288E+01 G. 6

3.59852257181947E+01 -1.03127591389610E+00 1

3.59852257181944E+01 1.03127591388856E+00 I

ELEMENT TYPE NO. 2

PTT --REAL --IMAGINARY PIY

-3.92158347529546E+01 0. 5

l.11231750542427E+02 0.. 6

3.59852257181954E+01 -1.03127591391060E+00 1

3.59852257181935E+31 1.03127591390788E+00 1
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RCLATIVE :ISPLACEME1T4T

START. SECTION -- BLOCK W. 1

ELEMENT NO. 1 TYPE PLATE EL. WIDTH 2.0500

Y-COORD. W-DISFL. V-DISPL.

-1.0250 -.00000 -.00042

-.5125 -.07294 -.00049

.0000 -.12249 -.00073

.5125 -.11822 -.00114

1.0250 .00293 -.00166

ELEMENT NO. 2 TYPE PLATE EL. WIDTH 1.0550

Y-COoR. W-DISPL. V-DISPL.

-.5275 .00166 .00293

-.2637 .27924 .00269

.0000 .75119 .00249

.2638 1.28542 .00235

.5275 1.84106 .00221

REPETITIVE SECTION -- BLOCK NO. 2
- o.---........-.....

ELEMENT NO. 3 TYPE PLATE EL. WIDTH 2.0500

Y-COORD. W-DISPL. V-DISPL.

-1.0250 .00293 -. 00156

-. 5125 .16373 -. 00063

.0000 .22875 .00031

.5125 .19449 .00129

1.0250 -. 00161 .00233

ELEMENT NO. 4 TYPE PLATE EL. WIDTH 1.0550

Y-COORD. W-DISPL. V-DISPL.

-.5275 -. 00233 -. 00161

-.2637 -.40992 -.00147

.0000 -1.10284 -. 00137

.2638 -1.88719 -. 00129

.5275 -2.70297 -. 00121

REPETITIVE SECTION -- BLOCK NO. 3
-----------------

ELEMENT NO. 3 TYPE PLATE EL. WIDTH 2.0500

Y-COOR, UW-DI SPL. V-DfSPL.

-1.0250 -. 00161 .00233

-.5125 -.21975 .00106

.0000 -.28769 -. 00012

.5125 -.43076 -.00131

1.0250 .00000 -.00261

ELEMENT NO. 4 TYPE PLATE EL. WIDTH 1,05 S
V-COORD. W-DISPL. V-DISPL.

-. 2s .00261 .o0000

-. 637 .45675 .00000

.0000 1.227 .oo00000
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.2638 2.10268 .00000

.5275 3.01160 .00000

REPETITIVE SECTION -- BLXK NO. 4

ELEMENT NO. 3 TYPE PLATE EL. WIDTH 2.0500

Y-COORD. W-DISPL. V-DISPL.

-1.0250 -. 00000 -.00261

-.5125 .23076 -.00131

.0000 .28769 -. 00012

.5125 .21975 .00106

1.0250 .00161 .00233

ELEMENT NO. 4 TYPE PLATE EL. WIDTH 1.0550

Y-COORD. W-DISPL. V-DISPL.

-.5275 -.00233 .00161

-.2637 -.40992 .00147

.00oU -1.10284 .00137

.2638 -1.88719 .00129

.5275 -2.70297 .00121

END SECTION --DLOCK NO. 5

ELEMENT NO. 5 TYPE PLATE EL. WIDTH 2.0500

Y-COORD. W-DISPL. V-DISPL.

-1.0250 .00161 .00233

S.S5125 -.19449 .00129

0.000p -.22875 .00031

.$125 -.16373 -.00063

1.0250 -.00293 -.00166

ELMENT NO. 6 TYPE PLATE EL. WIDTH 1.0550

Y-COORD. W-DISPL. V-DISPL.

-. 5275 .00166 -.00293

-.2637 .27924 -.00269

.0000 .75119 -.00249

.2638 1.28542 -.00235

.5275 1.84106 -. 00221

ELEMENT NO. 7 TYPE PLATE EL. WIDTH 2.0500

Y-COORD. W-DISPL. V-DISPL.

-1.0250 -.00293 -. 00166

-. 5125 .11822 -.00114

0.0000 .12249 -. 00073

.5125 .07294 -.00049

1.0250 -. 00000 -.00042

TINE OR CIGENVECTOR SOLUTION IS 1.268 CP-SEC.
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APPENDIX A

Generalized Eigenproblem for Large Matrices

with a Repeated Block Structure

Author: Claude R. Gagnon, Mathematical Analysis Unit, Boeing Computer Services
Division.

A.1 Problem Definition

The analysis of buckling loads for stiffened panels gives rise to large, sparse, square
matrices (G) which have a repeated block structure as illustrated in Figure A-i. The
matrix G is a function of the load (X) and the problem is to calculate the critical
load; i.e., the smallest positive value of X for which the equation

G( X)x = 0

has a nontrivial solution. The eigenvector (x) corresponcdng to the critical load is
also desired in some cases. This problem constitutes the general eigenproblem.

The ensuing sections of this appendix describe the numerical methods used for computing
the critical load and the corresponding eigenvector.

AK xL

IR cols. N x M

NB blocks

NxM

CKC x LC

IC cols.

FIGURE A-1. Block Structure of Load Matrix for Stiffened Panels
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A.2 Critical Load Computation

In accordance with the theory of linear equations, a value of X for which the equation

G(X)x = 0

has a nontrivial solution is equivalent to finding X such that

det G(X) = 0

Thus, the critical load problem reduces to that of finding the smallest positive root for

the real valued determinant function. This requires the use of an iterative scheme

where determinant values corresponding to systematically refined root estimates are re-

peatedly evaluated.

While there are numerous well known techniques (Ref. 1) for finding roots, there are

two particular difficulties with the structural buckling load problems:

(a) The matrices G are typically very large so that it is necessary to take advantage

of their soecial structure in order to minimize the computation time and storage.

(b) Determinant values can easily exceed the floating-point range of the computer.

Subroutine BLKDET (see Ref. 2, Section 3.6) was designed to take advantage of the

special structure of the G matrices. This subroutine can accommodate arbitrarily large
matrices entirely within the computer core storage, provided only that the core can con-

tain the submatrices A, B, and C (Figure A-1) and a modest amount of working space.

The problem of limited range for floating point numbers was handled in BLKDET by repre-
senting the determinant value with two numbers a and b where

det G(X) = a * 2 b

and where

0.0625 I a I <1

The smallest positive root X is initially determined within a broad interval by a stepping

procedure. A sequence of steps are taken away from an input initial estimate of .

The determinant values are tested for sign reversals, so that, ultimately an interval con-

taining a root is established. Whether the root thus isolated is the smallest one or not
depends on the initial estimate of X
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Subroutine DETZER, (see Ref. 2, Section 3.9), which is designed to accept the two
numbers a and b from BLKDET, further isolates the root within the interval established
by the foregoing stepping procedure. The DETZER procedure is particularly efficient
in obtaining the high precision roots required to satisfy eigenvector convergence criteria
(see Section A.3 below).

The entire procedure for finding the critical load is summarized in Figure A-2.

An exact root satisfies the equation

det G(X) = 0 ;

however, in the actual computation exact roots are seldom obtained. A root X is
determined such that

Xa <X<Xb

and

det G(X ) det G(X b) X

where

(Xb -

and e is an acceptable error.

When X satisfies the foregoing conditions, then it is correct to within + e no matter
how large det G( X) may be.
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Construct

A(X), B(,), C(X)

Finds an interval
such that the de- Calculate
sired root (X o) Subroutine BLKDET
satisfies det G( X )

= 0 det = 0 a=X

X, = 1X+A

trial X Consicset

find to suoch A(X), 8(C, C( brete
Subroutine D ETZER that det iG(t dts

2 dCot late I

End det C()
calculation

L ---- - ----

FIGURE A-2. Elgsnval Cmpu etton
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A.3 Eigenvector Computation

The method used to compute the eigenvector corresponding to a given root X is
Wielandt's method of inverse iteration (Ref. 3).

A stable method is of prime importance. Wilkinson [31 shows Wielandt's method to
be stable for the standard eigenproblem

(A - jl )Z = 0

Stability for the general eigenproblem can be established from the stability of the
standard eigenproblem as follows.

The standard eigenvalues and eigenvectors of a perturbed matrix A + eB converge to
those of A as e--0 (Wilkinson [3, pp. 66-671); i.e.,

(A + eB - jI)Z--,-(A - lAI)Z = 0 as f-- 0.

If .X k is an eigenvalue of the general eigenproblem G(X)x = 0, then the eigenvector
Z corresponding to u = 0 in the standard eigenproblem

[G(X k) - llZ = 0

is precisely the eigenvector xk satisfying

G(X k)x = 0 .

Thus, assuming that Xk is an approximation to Xk , then G( k) satisfies

G(Xk ) = G(Xk) + EB

for some scalar e and matrix B, and

[G(X*) - IllZ-[G(Xk) - jlIZ =0

as X I k

Thus it can be concluded that the general eigenvector problem is equivalent to the
standard eigenvector problem where the vector of interest corresponds to a zero eigen-
value,, and that stability of Wielandt iteration for the standard eigenproblem implies
stability for the general eigenproblem.

The implementation of the Wielandt method in the subroutine EIGV is described in Ref.
2, Section 3.13. A brief summary of Wielandt iteration for the standard elgenproblem
is given below:
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The solution of

AX = AZ

consists of repeated solutions of

(A - *I)v( i ) = b( i )

wh re u* is an aproximate eigenvalue and b(1) is chosen in some manner (typically

b(1 = [,1,..., 11). This is equivalent to repeatedly solving

G( X)x(i) = b(i)

for the general eigenproblem.

The justification of the Wielandt iteration method for the standard eigenproblem is to

be found in Reference 3.

From a practical point of view, when the eigenvalues are determined to a sufficiently
small e as noted in A.2, then eigenvector convergence is obtained in two iterations.

A third iteration is frequently used to verify the convergence.
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APPENDIX B

Test Problems Specified by NASA

1. a. Orthotropic Flange-Web

Buckling of a simply supported web with an orthotropic flange should be
studied. Two configurations should be investigated, one which buckles
locally, and the other which buckles in a beam-column mode. Results for
local buckling should be compared with Figure 6 of Reference 1.
Orthotropic properties assigned to the boron layer should be as follows:

Ell = 30.25 x 106 (filament direction)

E22 = 2.03 x 106

V12  = .346 (units - p.s.i.)

G12 = .5249 x 106

b. Results for the beam-column mode should be compared with the following,
result:

For Figure 7 (ref.), if the web is simply supported and
t b
t = 3, t =30, the buckling coefficient kW for a
w w

Lsection with length E- = 10 is approximately 1.56.
w

2. Truss-Core Sandwich Plate

Local buckling of a plate with equal-width elements should be investigated and
comoared with results oresented in Reference 2. In addition, two truss-core sand-
wiches designed to buckle locally in one case with the core restraining the face,
and in the other case with the face restraining the core. Results should be com-
pared with these oresented in Figure 5(a) of Reference 2.
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3. Discretely Stiffened Plate

Buckling of a simply supported plate with a single eccentric beam stiffener
should be investigated. Two configurations should be studied one with a deep
stiffener (asymmetric buckling) and one with a shallow stiffener (symmetric
buckling). Results should be compared with those presented in Figure 5 of
Reference 1 and with Reference 3.

4. Plate with Multiple Stiffeners

T-section and integral stiffened plates with at least 5 stiffeners should be
studied. The T-section plate should be sized to buckle locally and results
compared with Reference 4. The integrally stiffened plate should be sized
to buckle by general instability and results compared with Equation (A3) of
Reference 5.

In all of the cases described in Paragraphs 1 to 4, it would be desirable (where
possible) to investigale the buckling mode shape as well.
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AHPE NDIX C

CONVERSION OF UNIT& Ul'ID IN THIS DOCUMENT TO SI UNITS

Conversion factors( 1 ) for the un:iis used in this document are given in the following
table:

TABLE C.1

CONVERSION FACTORS

Conversion
Units used

Physical quantity in this document factor SI Unit

Length in. 0.0254 meters (m)

Sthess, modulus Ibs/in. 2  6.895 x 10 newtons/eter2 (N/m

Load per unit length lbs/in. 1.751 x 105 newtons/meter (N/m)
(pounds per linear inch, PLI)

*Multiply units used in this document by conversion factor to obtain equivalent
value in SI units.

(1) Comm. on Metric Pract.: ASTM Metric Practice Guide NBS Handbook 102,
U. S. Department Commerce, March 10, 1967.
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